
Java Reflection

source:
“Using Java™ Technology Reflection to Improve Design “
by Michael T. Portwood, MS - Exuberance, LLC

Agenda

What is reflection
History of reflection
How to use reflection
Myths about reflection
Advanced reflection issues
Improvements to reflection
Conclusion

What Is Reflection

Java™ Technology provides two ways
to discover information about an object
at runtime

Traditional runtime class identification
The object’s class is available at compile
and runtime
Most commonly used

Reflection
The object’s class may not be available
at compile or runtime

What Is Reflection

“Reflection in a programming language
context refers to the ability to observe and/or
manipulate the inner workings of the
environment programmatically.”1

“The reflection API represents, or reflects, the
classes, interfaces, and objects in the current
Java™ virtual machine.”2

1. J. R. Jackson, A. L. McClellan, Java™ 1.2 By Example, Sun Microsystems, 1999.
2. M. Campione, et al, The Java™ Tutorial Continued, Addison Wesley, 1999.

The History of Reflection

Introduced in JDK™ 1.1 release to support the
JavaBeans™ specification
Used throughout the JDK™ software and Java
runtime environment (JRE)

Java™ Foundation Classes API (JFC)
Jini™ connection technology
JavaMail™ API
JDBC™ API

Improved in Java 1.2 SDK
Further refined in Java 1.3 SDK

Why Runtime Class Identification

Java™ technology takes advantage
of polymorphism

New subclasses easily added
Bulk of behaviors inherited from
its superclass
No impact on other subclasses of
the superclass
At runtime, the JVM™ takes advantage
of late dynamic binding
Messages are directed to the
correct method

Example UML

Shape

+draw() : void

Circle

+draw() : void

Square

+draw() : void

Triangle

+draw() : void

Rhomboid

Runtime Class Identification Example
Code

 List s = new ArrayList ();
 s.add (new Circle ());
 s.add (new Square ());
 s.add (new Triangle ());
 for (Iterator e = s.iterator ();
 e.hasNext ();)
 ((Shape) e.next ()).draw ();

Class loading occurs
at first instantiation
When the object is
retrieved from the list,
it is cast to the
superclass, Shape
The object
remembers its class
and responds with
the correct draw
method

How the Class Object Works

Every class loaded into the JVM™ has a
Class object

Corresponds to a .class file
The ClassLoader is responsible for finding and loading the
class into the JVM™

At object instantiation…
The JVM™ checks to see if the class is already loaded into
the virtual machine
Locates and loads the class if necessary
Once loaded, the JVM™ uses the loaded
class to instantiate an instance

Proof of Dynamic Loading

public static void main (String[] args)
{

System.out.println("inside main");
new A();
System.out.println("After creating A");
try
{

Class.forName("B");
}
catch (ClassNotFoundException e)
{

e.printStackTrace();
}
System.out.println("After forName (\"B\")");
new C();
System.out.println("After creating C");

}

inside main
Loading A
After creating A
Loading B
After forName ("B")
Loading C
After creating C

Late Dynamic Binding

The JRE does not require that all classes are
loaded prior to execution

Different from most other environments

Class loading occurs when the class is first
referenced
Late Dynamic Binding is…

Important for polymorphism
Message propagation is dictated at runtime
Messages are directed to the correct method

Essential for reflection to be possible

Class Literals

A class literal is an expression consisting of
the name of a class, interface, array, or primitive type
followed by a ‘.’
And the token class (e.g. class, TYPE)

Using class literals is the second way to reference
an object’s class

Added in the JDK™ 1.1 release
Primitive types have corresponding wrapper classes
Examples:
Integer.TYPE → int
Integer.class → class java.lang.Integer
int.class → int

The instanceof Keyword

The instanceof keyword is the third way to reference an
object’s class
Used with both classes and interfaces
Returns true if the object is a species of a
specified class

Subclasses will also answer true
Code becomes structurally bound to the class hierarchy

Several limitations on the referenced class
Must be a named class or interface
The class constant cannot be the Class class

Example:
if (x instanceof Circle)

((Circle) x).setRadius(10);

The Reflection API

The reflection API is the fourth way to
reference an object’s class
Reflection allows programs to interrogate
and manipulate objects at runtime
The reflected class may be…

Unknown at compile time
Dynamically loaded at runtime

Core Reflection Classes

java.lang.reflect
The reflection package
Introduced in JDK 1.1 release

java.lang.reflect.AccessibleObject
The superclass for Field, Method, and
Constructor classes
Suppresses the default Java language access
control checks
Introduced in JDK 1.2 release

Core Reflection Classes (Cont.)

java.lang.reflect.Array
Provides static methods to dynamically create and
access Java arrays

java.lang.reflect.Constructor
Provides information about, and access to, a
single constructor for a class

Core Reflection Classes (Cont.)

java.lang.reflect.Field
Provides information about, and dynamic access
to, a single field of a class or
an interface
The reflected field may be a class (static)
field or an instance field

Core Reflection Classes (Cont.)

java.lang.reflect.Member
Interface that reflects identifying information about a single
member (a field or a method) or a constructor

java.lang.reflect.Method
Provides information about, and access to, a single method
on a class or interface

java.lang.reflect.Modifier
Provides static methods and constants to decode class and
member access modifiers

Core Reflection Classes (Cont.)

JDK 1.3 release additions
java.lang.reflect.Proxy

Provides static methods for creating dynamic proxy
classes and instances
The superclass of all dynamic proxy classes created by
those methods

java.lang.reflect.InvocationHandler
Interface
Interface implemented by the invocation handler of a
proxy instance

Commonly Used Classes

java.lang.Class
Represents classes and interfaces within a running Java™
technology-based program

java.lang.Package
Provides information about a package that can be used to
reflect upon a class or interface

java.lang.ClassLoader
An abstract class
Provides class loader services

Using Reflection

Reflection allows programs to interrogate an
object at runtime without knowing the object’s
class
How can this be…

Connecting to a JavaBean™ technology-based
component
Object is not local

RMI or serialized object
Object dynamically injected

What Can I Do With Reflection

Literally everything that you can do if you know the
object’s class

Load a class
Determine if it is a class or interface
Determine its superclass and implemented interfaces
Instantiate a new instance of a class
Determine class and instance methods
Invoke class and instance methods
Determine and possibly manipulate fields
Determine the modifiers for fields, methods, classes,
and interfaces
etc.

Here Is How To…

Load a class
Class c = Class.forName(“Classname”)

Determine if an interface, an array class, or
primitive type
c.isInterface() / c.isArray() / c.isPrimitive()

Determine lineage
Super-class
Class c1 = c.getSuperclass()

Implemented interface(s)
Class[] c2 = c.getInterfaces()

Here Is How To…

Determine constructors
Constructor[] c0 = c.getDeclaredConstructors()

Instantiate an instance
Default constructor
Object o1 = c.newInstance()

Non-default constructor
Constructor c1 = c.getConstructor(Class[]{…})
Object i = c1.newInstance(Object[] {…})

The constructor’s
formal parameter types

Initialization
parameters

Here Is How To…

Determine methods
Methods[] m1 = c.getDeclaredMethods()

Find a specific method
Method m = c.getMethod(“methodName”,

Class[] {…})

Invoke a method
m.invoke (c, Object[] {…})

The method’s formal
parameter types

The object the
underlying method
is invoked from

The method arguments

Here Is How To…

Determine modifiers
int mo = c.getModifiers ()

The modifier encodings are defined in The Java Virtual Machine Specification

Determine fields
Field[] f = c.getDeclaredFields ()

Find a specific field
Field f = c.getField(“fieldName”)

Modify a specific field
Get the value of a specific field on a specified object
Object val_obj = f.get(obj)

Set the value of a specific fieldon a specified object
f.set(obj, value)

Four Myths of Reflection

“Reflection is only useful for JavaBeans™
technology-based components”
“Reflection is too complex for use in
general purpose applications”
“Reflection reduces performance
of applications”
“Reflection cannot be used with the 100% Pure
Java™ certification standard”

“Reflection Is Only Useful for JavaBeans™
Technology-based Components”

False
Reflection is a common technique used in other
pure object oriented languages like Smalltalk and
Eiffel
Benefits

Reflection helps keep software robust
Can help applications become more

Flexible
Extensible
Pluggable

“Reflection Is Too Complex for Use in
General Applications”

False
For most purposes, use of reflection requires
mastery of only several method invocations
The skills required are easily mastered
Reflection can significantly…

Reduce the footprint of an application
Improve reusability

“Reflection Reduces the
Performance of Applications”

False
Reflection can actually increase the
performance of code
Benefits

Can reduce and remove expensive
conditional code
Can simplify source code and design
Can greatly expand the capabilities
of the application

“Reflection Cannot Be Used With the 100%
Pure Java™ Certification Standard”

False
There are some restrictions

“The program must limit invocations to
classes that are part of the program or
part of the JRE”3

3. Sun Microsystems, 100% Pure Java™ Certification Guide, version 3.1, May 2000.

Advanced Reflection Issues

Why use reflection
Using reflection with object-oriented
design patterns
Common problems solved using reflection

Misuse of switch/case statements
User interface listeners

Why Use Reflection

Reflection solves problems within
object-oriented design:

Flexibility
Extensibility
Pluggability

Reflection solves problems
caused by…

The static nature of the class hierarchy
The complexities of strong typing

Use Reflection With Design Patterns

Design patterns can benefit
from reflection
Reflection can …

Further decouple objects
Simplify and reduce maintenance

Design Patterns and Reflection

Many of the object- oriented
design patterns can benefit
from reflection
Reflection extends
the decoupling of objects
that design patterns offer
Can significantly simplify
design patterns

Factory
Factory Method
State
Command
Observer
Others

Factory Without Reflection

public static Shape getFactoryShape (String s)
{
 Shape temp = null;
 if (s.equals (“Circle”))
 temp = new Circle ();
 else
 if (s.equals (“Square”))
 temp = new Square ();
 else
 if (s.equals (“Triangle”)
 temp = new Triangle ();
 else
 // …
 // continues for each kind of shape
 return temp;
}

Factory With Reflection

public static Shape getFactoryShape (String s)
{
 Shape temp = null;
 try
 {
 temp = (Shape) Class.forName (s).newInstance ();
 }
 catch (Exception e)
 {
 }
 return temp;

}

Design Pattern Implications

Product classes can be added, changed, or
deleted without affecting the factory

Faster development (one factory fits all)
Reduced maintenance
Less code to develop, test, and debug

Design Strategies for Using Reflection

Challenge switch/case and cascading
if statements

Rationale
The switch statement should scream “redesign me” to
the developer
In most cases, switch statements perform pseudo
subclass operations

Steps
Redesign using an appropriate class decomposition
Eliminate the switch/case statement
Consider a design pattern approach

Benefits
High level of object decoupling
Reduced level of maintenance

Challenge UI Listeners

Can a generalized listener function for
several components or does each component
need a unique listener?

Consider using the Command design pattern
Steps

Use the setActionCommand method to set the method to
reflect upon for each component
Instantiate only one instant of the listener

Benefits
Smaller program memory footprint
Faster performance due to less class loading
Behavior placed in the appropriate place

Listener Without Reflection

addBT.addActionListener (new ActionListener ()
 {
 public void actionPerformed (ActionEvent e)
 {
 Outer.this.setTransactionState (EFrameState.add);
 Outer.this.setPromptMode ();
 Outer.this.clearForm ();
 Outer.this.enableForm (true);
 Outer.this.queryBT.setEnabled (false);
 Outer.this.deleteBT.setEnabled (false);
 Outer.this.addBT.setEnabled (true);
 Outer.this.addBT.setSelected (true);
 Outer.this.beforeTransaction ();
 … // other code excluded for clarity
 }
 });

Listener With Reflection

protected ActionListener actionAdapter = new ActionListener ()
 {
 final static Class[] emptyClass = new Class[] {};
 final static Object[] emptyObject = new Object[] {};

 public void actionPerformed (ActionEvent e)
 {
 try
 {
 Outer.this.getClass ().getMethod (e.getActionCommand (),
 emptyClass).invoke (Outher.this, emptyObject);
// alternatively
// Outer.class.getMethod (e.getActionCommand (),
// emptyClass).invoke (Outer.this, emptyObject);
 }
 catch (Exception ee)
 {
 }
 }
 };

Improvements to Reflection
in JDK™ 1.2 Release

Numerous small changes throughout
the API
Most changes “under the hood”
Two classes added

AccessibleObject class
Allows trusted applications to work with private, protected, and
default visibility members

ReflectPermission class
Complements the AccessibleObject class
Governs the access to objects and their
components via reflection

Improvements to Reflection
in JDK™ 1.3 Release

Two significant additions to the API
Proxy Class

Implements a specified list of interfaces
Delegates invocation of the methods
defined by those interfaces to a separate
InvocationHandler object

InvocationHandler Interface
Defines a single invoke method that is
called whenever a method is invoked on
a dynamically created Proxy object

Capabilities Not Available Using
Reflection

What are a class’ subclasses?
Not possible due to dynamic
class loading

What method is currently executing
Not the purpose of reflection
Other APIs provide this capability

Review

The JRE allows 4 ways to reference a class
The class’ class definition
Class literals
The instanceof keyword
Reflection

Reflection is the only pure runtime way
Provides full access to the object’s capabilities
Provides runtime capabilities not
otherwise available
Improves the quality of an application

Review

Solves several design issues
Simplifies the static complexity of methods by providing
elimination of…

Nested if/else constructs
The switch/case construct

Improves user interface code by…
Removing redundant inner classes
Reducing application footprint
Placing behaviors where they belong

Extends the power of classic
object-oriented design patterns

Benefits of Reflection

Reflection provides…
High level of object decoupling
Reduced level of maintenance
Programs become…

Flexible
Extensible
Pluggable

Software becomes “soft”

	Java Reflection
	Agenda
	What Is Reflection
	What Is Reflection
	The History of Reflection
	Why Runtime Class Identification
	Example UML
	Runtime Class Identification Example Code
	How the Class Object Works
	Proof of Dynamic Loading
	Late Dynamic Binding
	Class Literals
	The instanceof Keyword
	The Reflection API
	Core Reflection Classes
	Core Reflection Classes (Cont.)
	Core Reflection Classes (Cont.)
	Core Reflection Classes (Cont.)
	Core Reflection Classes (Cont.)
	Commonly Used Classes
	Using Reflection
	What Can I Do With Reflection
	Here Is How To…
	Here Is How To…
	Here Is How To…
	Here Is How To…
	Four Myths of Reflection
	“Reflection Is Only Useful for JavaBeans™ Technology-based Components”
	“Reflection Is Too Complex for Use in General Applications”
	“Reflection Reduces the Performance of Applications”
	“Reflection Cannot Be Used With the 100% Pure Java™ Certification Standard”
	Advanced Reflection Issues
	Why Use Reflection
	Use Reflection With Design Patterns
	Design Patterns and Reflection
	Factory Without Reflection
	Factory With Reflection
	Design Pattern Implications
	Design Strategies for Using Reflection
	Challenge UI Listeners
	Listener Without Reflection
	Listener With Reflection
	Improvements to Reflection in JDK™ 1.2 Release
	Improvements to Reflectionin JDK™ 1.3 Release
	Capabilities Not Available Using Reflection
	Review
	Review
	Benefits of Reflection

