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Abstract

Finding useful patterns in large datasets has attracted
considerable interest recently, and one of the most widely
studied problems in this area is the identification of clusters,
or densely populated regions, in a multi-dimensional dataset.
Prior work does not adequately address the problem of large
datasets and minimization of I/O costs.

This paper presents a data clustering method named
BIRCH (Balanced Iterative Reducing and Clustering using
Hierarchies), and demonstrates that it is especially suitable
for very large databases. BIRCH incrementally and dynami-
cally clusters incoming multi-dimensional metric data points
to try to produce the best quality clustering with the avail-
able resources (i.e., available memory and time constraints).
BIRCH can typically find a good clustering with a single scan
of the data, and improve the quality further with a few ad-
ditional scans. BIRCH is also the first clustering algorithm
proposed in the database area to handle “noise” (data points
that are not part of the underlying pattern) effectively.

We evaluate BIR(C’H’s time/space efficiency, data input
order sensitivity, and clustering quality through several
experiments. We also present a performance comparisons
of BIRCH versus CLARANS, a clustering method proposed
recently for large datasets, and show that BIRCH is
consistently superior.

1 Introduction

In this paper, we examine data clustering, which is
a particular kind of data mining problem. Given a
large set of multi-dimensional data points, the data
space is usually not uniformly occupied. Data clustering
identifies the sparse and the crowded places, and
hence discovers the overall distribution patterns of
the dataset. Besides, the derived clusters can be
visualized more efficiently and effectively than the
original dataset[Lee81, DJ80].
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(ienerally, there are two types of attributes involved
in the data to be clustered: metric and nonmetrict. In
this paper, we consider metric attributes, as in most
of the Statistics literature, where the clustering prob-
lem is formalized as follows: Guwen the desired num-
ber of clusters K and a dataset of N pownls, and a
distance-based measurement function (e.g., the weighted
total/average distance between pairs of pownts wn clus-
ters), we are asked to find a partition of the dataset that
mamimizes the value of the measurement function. This
is a nonconvezr discrete [KR90] optimization problemn.
Due to an abundance of local minima, there is typically
no way to find a global minimal solution without trying
all possible partitions.

We adopt the problem definition used in Statistics,
but with an additional, database-oriented constraint:
The amount of memory available 1s lumated (typically,
much smaller than the data set size) and we want to
mintmaze the time required for 1/0. A related point 1s
that it is desirable to be able to take into account the
amount of time that a user is willing to wait for the
results of the clustering algorithm.

We present a clustering method named BIR(C'H and
demonstrate that it is especially suitable for very large
databases. Its 1/0O cost is linear in the size of the
dataset: a single scan of the dataset yields a good
clustering, and one or more additional passes can
{optionally) be used to improve the quality further.

By evaluating BIRCH’s time /space efficiency, data in-
put order sensitivity, and clustering quality, and com-
paring with other existing algorithms through experi-
ments, we argue that BIRCH is the best available clus-
tering method for very large databases. BIRCH’s ar-
chitecture also offers opportunities for parallelisim, and
for interactive or dynamic performance tuning based on
knowledge about the dataset, gained over the course of
the execution. Finally, BIRC'H is the first clustering al-

Hnformally, a metric attribute is an attribute whose values
satisfy the requirements of Euclidian space, i.e., self identity (for
any X, X = X) and triangular inequality (there exists a distance
definition such that for any X1,X2,X3, d(X1, X2) + d(X2, X3) >
(l(Xl . Xg))



gorithin proposed in the database area that addresses
outliers (intuitively, data points that should be regarded
as “noise” ) and proposes a plausible solution.

1.1 Outline of Paper

The rest of the paper is organized as follows. Sec. 2
surveys related work and suminarizes BIRC'H’s contri-
butions Sec. 3 presents some background material.
Sec. 4 introduces the concepts of clustering feature (CF)
and CF tree, which are central to BIRCH. The details
of BIRC'H algorithm is described in Sec. 5, and a pre-
liminary performance study of BIRCH is presented in
sec. 6. Finally our conclusions and directions for fu-
ture research are presented in Sec. 7.

2 Summary of Relevant Research

Data clustering has been studied in the Statistics
[DHT73, DJ8O, Lee81, Mur83], Machine Learning [CKS88,
Fis87, Fis95, Leb87] and Database [NH94, EKX95a,
EKX95b] communities with different methods and dif-
ferent emphases. Previous approaches, probability-
based (like miost approaches in Machine Learning) or
distance-based (like most work in Statistics) , do not
adequately consider the case that the dataset can be too
large to fit in main memory. In particular, they do not
recognize that the problem must be viewed in terms of
how to work with a limited resources (e.g.. memory that
is typically, much smaller than the size of the dataset) to
do the clustering as accurately as possible while keeping
the 1/0 costs low.

Probability-based approaches: They typically
[Fis87, ('KS88] make the assuinption that probability
distributions on separate attributes are statistically
imdependent of each other. In reality, this is far
from true. Correlation between attributes exists, and
sontetiines this kind of correlation is exactly what we are
looking for. The probability representations of clusters
make updating and storing the clusters very expensive,
especially if the attributes have a large number of values
because their complexities are dependent not only on
the number of attributes, but also on the number of
values for each attribute. A related problem is that
often (e.g., [Fis87]), the probability-based tree that is
built to identify clusters is not height-halanced. For
skewed input data, this may cause the performance to
degrade dramatically.

Distance-based approaches: They assume that all
data polnts are given in advance and can be scanned
frequently. They totally or partially ignore the fact that
not all data points in the dataset are equally important
with respect to the clustering purpose, and that data
points which are close and dense should be considered
collectively instead of individually. They are global or
sema-global methods at the granularity of data points.
That is, for each clustering decision, they inspect all
data points or all currently existing clusters equally no
matter how close or far away they are, and they use
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global measurernents, which require scanning all data
points or all currently existing clusters. Hence none of
them have linear time scalability with stable quality.

For example, using ezhaustwe enumeration (FE),
there are approximately AV/K! [DH73] ways of par-
titioning a set of NV data points into K subsets. So in
practice, though it can find the global minimum, it is
infeasible except when N and K are extremely small.
Iteratwe optumazation (10} [DHT3, KR9Y(] starts with
an initial partition, then tries all possible moving or
swapping of data points from one group to another to
see if such a moving or swapping improves the value of
the measurement function. It can find a local ininimun,
but the quality of the local minimurm is very sensitive to
the initially selected partition, and the worst case time
complexity is still exponential. Hierarchical clustering
(HC) [DHT73, KR90, Mur83] does not try to find “best”
clusters, but keeps merging the closest pair (or splitting
the farthest pair) of objects to form clusters. With a
reasonable distance measurement, the best time com-
plexity of a practical H( algorithm is O(N?). So it is
still unable to scale well with large N.

Clustering has been recognized as a useful spatial data
mining method recently. [NH94] presents ('LARANS
that 1s based on randomized search, and proposes
that CLARANS outperforms traditional clustering al-
gorithms in Statistics. In CLARANS, a cluster is repre-
sented by 1ts medoud, or the most centrally located data
pownt in the cluster The clustering process is formal-
ized as searching a graph in which each node is a K-
partition represented by a set of A medoids, and two
nodes are neighbors if they only differ by one medoid.
CLARANS starts with a randomnly selected node. For
the current node, it checks at most the mazneighbor
number of neighbors randomly, and if a better neigh-
bor 1s found, it moves to the neighbor and continues:
otherwise it records the current node as a local mun:-
mum, and restarts with a new randomly selected node
to search for another local minamum. CLARANS stops
after the numlocal number of the so-called local minima
have been found | and returns the best of these.

CLARANS suffers from the same drawbacks as the
above [0 method wrt. efficiency In addition, it may
not find a real local minimum due to the searching
trimming controlled by mazneighbor. Later [EKX95a]
and [EKX95b] propose focusing techniques (based on
R*-trees) to improve CLARANSs ability to deal with
data objects that may reside on disks by (1) clustering
a sample of the dataset that is drawn from each E*-tree
data page; and (2) focusing on relevant data points for
distance and quality updates. Their experiments show
that the time 1s improved with a small loss of quality.

2.1 Contributions of BIRCH
An important contribution is our formulation of the
clustering problem in a way that is appropriate for



very large datasets, by making the time and mem-
ory constraints explicit. In addition, BIRCH has the
following advantages over previous distance-based ap-
proaches.

o BIRCH is local (as opposed to global) in that each
clustering decision is made without scanning all data
points or all currently existing clusters. It uses
measurements that reflect the natural closeness of
points, and at the same time, can be incrementally
maintained during the clustering process.

e BIRCH exploits the observation that the data space
s usually not uniformly occupied, and hence not
every data point is equally important for clustering
purposes. A dense region of points is treated
collectively as a single cluster. Points in sparse regions
are treated as outliers and removed optionally.

o BIRC'H makes full use of available memory to derive
the finest possible subclusters (to ensure accuracy)
while minimizing 1/O costs (to ensure efficiency).
The clustering and reducing process is organized and
characterized by the use of an in-memory, height-
balanced and highly-occupied tree structure. Due to
these features, its running time is linearly scalable.

oIf we omit the optional Phase 4 5, BIRCH is an
incremental method that does not require the whole
dataset in advance, and only scans the dataset once.

3 Background

Assume that readers are familiar with the terminology
of vector spaces, we begin by defining centroid, radius
and diameter for a cluster. Given N d- dlmensmnal data
points in a cluster: {X} where ¢ = ., N, the

centroid X 0, radius R and diameter D of the cluster
are defined as:

N
Xo:_Z,_-].\; ul 1)
o (X = Xop?
R=(——-————Z' 2 ) )2 (2)
X’ 2
D= Zz 12 l( .2. (3)

N(N -1)
R is the average distance from member points to the
centroid. ) is the average pairwise distance within
a cluster. They are two alternative measures of the
tightness of the cluster around the centroid. Next
between two clusters, we define 5 alternative distances
for measuring their closeness.
(siven the centroids of two clusters: X_Ol and sz,
the centroid Euclidian distance D0 and centroid
Manhattan distance D1 of the two clusters are

defined as:
(4)

DO = ((X0; — X0,)%)%

d
D1 = X0y - X0y = Y x5, - x5,

=1

(5)

Given N d-dimensional data points in a cluster: {X:}
where 7+ = 1,2,..., N;, and N, data points in another
{X]} Where J= N1+ 1,N;y +2,..., N+ N,

cluster:

]

r

the average inter-cluster distance D2, average
intra-cluster distance D3 and variance increase
distance D4 of the two clusters are defined as:

Ny+N2 7 \2
X - X
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D3 = (&= )t (7)
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1
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D3 is actually D of the merged cluster. For the sake
of clarity, we treat X?O, R and D as properties of a
single cluster, and D0, D1, D2, D3 and D4 as properties
between two clusters and state them separately. Users
can optionally preprocess data by weighting or shifting
along different dimensions without affecting the relative
placement.

4 Clustering Feature and CF Tree

The concepts of Clustering Feature and CF tree
are at the core of BIRCHs incremental clustering.
A Clustering Feature is a triple summarizing the
information that we maintain about a cluster.

Definition 4.1 Given N d-dimensional data points in
a cluster: {X,} where 1 = 1,2,..., N, the Clustering
Feature (CF) vector of the cluster is defined as a
triple: CF = (N, L’.‘S’,.S'S), where N is the number of
data points in the cluster, LS is the linear sum of the
N data points, i.e. Z]\il X‘i, and S5 is the square sum
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of the N data points, i.e. Zz X . 0O

Theorem 4.1 (CF Additivity Theorem): Assume
that CFq = (Nl,L._é'l,SSl), and CFg = (N3, LS, 557)
are the CF wvectors of two disjoint clusters. Then the
CF wvector of the cluster that s formed by merging the
two disjoint clusters, 1s:

CFl + CFz = (N1 + No, L.-é'] + LEQ, SS51 + 852) (9)

The proof consists of straightforward algebra. []

From the CF definition and additivity theorem, we
know that the CF vectors of clusters can be stored and
calculated incrementally and accurately as clusters are
merged. It is also easy to prove that _given the CF
vectors of clusters, the corresponding X0, R, D, DO,
D1, D2, D3 and D4, as well as the usual quality metrics
(such as weighted total/average diameter of clusters)
can all be calculated easily.

One can think of a cluster as a set of data points,
but only the CF vector stored as summary. This
CF summary i1s not only efficient because it stores
much less than all the data points in the cluster, but
also accurate because it is sufficient for calculating all
the measurements that we need for making clustering
decisions in BIRCH.



4.1 CF Tree

A CF tree is a height-balanced tree with two param-
branching factor B and threshold T. Each
nonleaf node contains at most B entries of the form
[CF;, child;], where i = 1,2,.., B, “child;” is a pointer
to 1ts i-th child node, and CF, is the CF of the sub-
cluster represented by this child. So a nonleaf node
represents a cluster made up of all the subclusters rep-
resented by its entries. A leaf node contains at most L
entries, each of the form [CF;], where 1 = 1,2,..., L. In
addition, each leaf node has two pointers, “prev” and
“next” which are used to chain all leaf nodes together
for efficient scans. A leaf node also represents a clus-
ter made up of all the subclusters represented by its
entries. But all entries in a leaf node must satisfy a
threshold requirement, with respect to a threshold value
T: the dwameter (or radwus) has to be less than T.

The tree size 1s a function of 7. The larger T is, the
sialler the tree i1s. We require a node to fit in a page
of size P. Once the dimension d of the data space is
given, the sizes of leaf and nonleaf entries are known,
then B and L are determined by P. So P can be varied
for performance tuning.

Such a CF tree will be built dynamically as new data
objects are inserted. It is used to guide a new insertion
mto the correct subcluster for clustering purposes just
tlie same as a B-4-tree is used to guide a new insertion
into thie correct position for sorting purposes. The CF
tree 1s a very compact representation of the dataset
because each entry in a leaf node is not a single data
point but a subcluster (which absorbs many data points
with diameter (or radius) under a specific threshold T').
4.2 Insertion into a CF Tree
We now present the algorithm for inserting an entry
into a CF tree. Given entry “Ent”, it proceeds as
helow:

efers:

L. Identifynng the appropriate leaf: Starting from the
root, it recursively descends the CF tree by choosing
the closest child node according to a chosen distance
wetric: D0, D1,0D2,D3 or D4 as defined in Sec. 3.

2. Modifying the leaf: When it reaches a leaf node, it
finds the closest leaf entry, say L,, and then tests
whether L, can “absorb” “Ent” without violating the
threshold condition®. If so, the CF vector for L; is
updated to reflect this. If not. a new entry for “Ent”
ts added to the leaf. If there is space on the leaf for
this new entry, we are done, otherwise we must split
the leaf node. Node splitting is done by choosing the
farthest pair of entries as seeds, and redistributing
the remaining entries based on the closest criteria.

-Modifyang the path to the leaf: After inserting “Ent”

wmto a leaf, we must update the CF information for

N

?That is, the cluster merged with “Ent” and L, must satisfy
the threshold condition. Note that the CF vector of the new
cluster can be computed from the CF vectors for L, and “Ent”.
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each nonleaf entry on the path to the leaf. In the
absence of a split, this simply involves adding CF
vectors to reflect the addition of “Ent”. A leaf split
requires us to insert a new nonleaf entry into the
parent node, to describe the newly created leaf. If
the parent has space for this entry, at all higher levels,
we only need to update the CF vectors to reflect the
addition of “Ent”. In general, however, we may have
to split the parent as well, and so on up to the root.
If the root is split, the tree height increases by one.

4. A Merging Refinement: Splits are caused by the page

size, which is independent of the clustering properties
of the data. In the presence of skewed data input
order , this can affect the clustering quality, and also
reduce space utilization. A sirple additional merging,
step often helps ameliorate these problems: Suppose
that there 1s a leaf split, and the propagation of this
split stops at some nonleaf node N,, ie., N, can
accommodate the additional entry resulting from the
split. We now scan node N, to find the two closest
entries. If they are not the pair corresponding to the
split, we try to merge them and the corresponding two
child nodes. If there are more entries in the two child
nodes than one page can hold, we split the merging
result again. During the resplitting, in case one of
the seed attracts enough merged entries to fill a page.
we just put the rest entries with the other seed. In
sumimary, if the merged entries fit on a single page, we
free a node space for later use, create one more entry
space in node N, thereby increasing space utilization
and postponing future splits; otherwise we improve
the distribution of entries in the closest two children.

Since each node can only hold a limited number of
entries due to its size, it does not always correspond
to a natural cluster. Occasionally, two subclusters that
should have been in one cluster are split across nodes.
Depending upon the order of data input and the degree
of skew, it is also possible that two subclusters that
should not be in one cluster are kept in the same node.
These infrequent but undesirable anomalies caused by
page size are remedied with a global (or semi-global)
algorithm that arranges leaf entries across nodes (Phase
3 discussed in Sec. 5). Another undesirable artifact is
that if the same data point Is inserted twice, but at
different times, the two coples might be entered into
distinct leaf entries. Or, in another word, occasionally
with a skewed input order, a point might enter a leaf
entry that it should not have entered. This problem
can be addressed with further refinement passes over
the data (Phase 4 discussed in Sec. 5).

5 The BIRCH Clustering Algorithm

Fig. 1 presents the overview of BIRCH. The main task
of Phase | is to scan all data and build an initial in-
memory CF tree using the given amount of mnemory
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Figure 1: BIRCH Overview

and recycling space on disk. This CF tree tries to
reflect the clustering information of the dataset as fine
as possible under the memory limit. With crowded
data points grouped as fine subclusters, and sparse
data points removed as outliers, this phase creates a in-
memory summary of the data. The details of Phase 1
will be discussed in Sec. 5.1. After Phase 1, subsequent
computations in later phases will be:

1.fast because (a) no I/O operations are needed, and (b)
the problem of clustering the original data is reduced
to a smaller problem of clustering the subclusters in
the leaf entries;

2.accurate because (a) a lot of outliers are eliminated,
and (b) the remaining data is reflected with the finest
granularity that can be achieved given the available
INEmory;

,

less order semsitive because the leaf entries of the
initial tree form an input order containing better data
locality compared with the arbitrary original data
input order.

Phase 2 is optional. We have observed that the ex-
isting global or semi-global clustering methods applied
in Phase 3 have different input size ranges within which
they perform well in terms of both speed and quality.
So potentially there is a gap between the size of Phase
1 results and the input range of Phase 3. Phase 2 serves
as a cushion and bridges this gap: Similar to Phase 1,
it scans the leaf entries in the initial CF tree to rebuild
a smaller CF tree, while removing more outliers and
grouping crowded subclusters into larger ones.

The undesirable effect of the skewed input order,
and splitting triggered by page size (Sec. 4.2) causes
us to be unfaithful to the actual clustering patterns
in the data. This is remedied in Phase 3 by using
a global or semi-global algorithm to cluster all leaf
entries. We observe that existing clustering algorithms
for a set of data points can be readily adapted to work
with a set of subclusters, each described by its CF
vector. For example, with the CF vectors known, (1)
naively, by calculating the centroid as the representative
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of a subcluster, we can treat each subcluster as a
single point and use an existing algorithm without
modification; (2) or to be a little more sophisticated, we
can treat a subcluster of n data points as its centroid
repeating n times and modify an existing algorithm
slightly to take the counting information into account;
(3) or to be general and accurate, we can apply an
existing algorithm directly to the subclusters because
the information in their CF vectors is usually sufficient
for calculating most distance and quality metrics.

In this paper, we adapted an agglomerative hierarchi-
cal clustering algorithm by applying it directly to the
subclusters represented by their CF vectors. It uses
the accurate distance metric D2 or D4, which can be
calculated from the CF vectors, during the whole clus-
tering, and has a complexity of O(N?). It also provides
the flexibility of allowing the user to specify either the
desired number of clusters, or the desired diameter (or
radius) threshold for clusters.

After Phase 3, we obtain a set of clusters that
captures the major distribution pattern in the data.
However minor and localized inaccuracies might exist
because of the rare misplacement problem mentioned in
Sec. 4.2, and the fact that Phase 3 is applied on a coarse
summary of the data. Phase 4 is optional and entails
the cost of additional passes over the data to correct
those inaccuracies and refine the clusters further. Note
that up to this point, the original data has only been
scanned once, although the tree and outlier information
may have been scanned multiple times.

Phase 4 uses the centroids of the clusters produced by
Phase 3 as seeds, and redistributes the data points to
its closest seed to obtain a set of new clusters. Not only
does this allow points belonging to a cluster to migrate,
but also it ensures that all copies of a given data point
go to the same cluster. Phase 4 can be extended with
additional passes if desired by the user, and it has been
proved to converge to a minimum [GG92]. As a bonus,
during this pass each data point can be labeled with the
cluster that it belongs to, if we wish to identify the data
points in each cluster. Phase 4 also provides us with the
option of discarding outliers. That is, a point which is
too far from its closest seed can be treated as an outlier
and not included in the result.

5.1 Phase 1 Revisited

Fig. 2 shows the details of Phase 1. [t starts with
an initial threshold value, scans the data, and inserts
points into the tree. If it runs out of memory before
it finishes scanning the data, it increases the threshold
value, rebuilds a new, smaller CF tree, by re-inserting
the leaf entries of the old tree. After the old leaf entries
have been re-inserted, the scanning of the data (and
insertion into the new tree) is resumed from the point
at which it was interrupted.
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Figure 2: Control Flow of Phase 1

Ofd Tree

New Tree
——
Freed Createg
OldCurrentPath NewClosestPath  NewCurrentPath
Figure 3. Rebwlding C'F Tree
5.1.1 Reducibility
Assume ¢, is a CF tree of threshold 7,. Its height

s h, and its size (number of nodes) is 4. Given
Ti41 > T,. we want to use all the leaf entries of ¢; to
rebuild a CF tree. {,4. of threshold T, such that the
size of t,4, should not be larger than S,. Following
15 the rebuilding algorithm as well as the consequent
reducibility theorem.

Assume within each node of CF tree ¢,, the entries
are labeled contiguously from 0 to ng — 1, where ny is
the number of entries in that node, then a path from
an entry in the root (level 1) to a leaf node (level /)
can be uniquely represented by (¢1,4s,...,2,—), where
i, = L.....h— 1 is the label of the j-th level entry

on that path. So naturally, path (i(ln,z'(zl), ...‘1'5:_)1) is
before (or < ) path (7752>, igg)‘ 2.22—)1) if z'(ll) = igz), e

z;l_)l = i(]z_)“ and 2"(]1) < i‘g.z)(O <Jj < h=1). It is obvious

that a leaf node corresponds to a path uniquely, and we
will use path and leaf node interchangeably from now
on.

The algorithin is illustrated in Fig. 3. With the
natural path order defined above, it scans and frees the
old tree path by path, and at the same time, creates the
new tree path by path. The new tree starts with NULL,
and “OldCurrentPath” starts with the leftmost path
in the old tree. For “OldCurrentPath”, the algorithm
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proceeds as below:

1. Create the corresponding “NewCurrentPath” i the
new tree: nodes are added to the new tree exactly
the same as in the old tree, so that there is no chance
that the new tree ever becomes larger than the old
tree.

2. Insert leaf entries ain “OldCurrentPath” to the new
tree: with the new threshold, each leaf entry in “Qld-
CurrentPath” is tested against the new tree to see if it
can fit ® in the “NewClosestPath” that is found top-
down with the closest criteria in the new tree. If yes
and “NewClosestPath” is before “New(urrentPath”,
then it is inserted to “NewClosestPath”, and the space
in “NewCurrentPath” is left available for later use;
otherwise it is inserted to “NewCurrentPath” without
creating any new node.

3. Free space in “OldCurrentPath” and “New('urrent-
Path”: Once all leaf entries in “OldCurrentPath™ are
processed, the un-needed nodes along “OldCurrent-
Path” can be freed. It is also likely that some nodes
along “NewCurrentPath” are empty because leaf en-
tries that originally correspond to this path are now
“pushed forward”. In this case the empty nodes can
be freed too.

4. “OldCurrentPath” 1s set to the next path in the old
tree of there exists one, and repeat the above steps.

From the rebuilding steps, old leaf entries are re-
inserted, but the new tree can never become larger
than the old tree. Since only nodes corresponding
to “OldCurrentPath” and “NewCurrentPath” need to
exist simultaneously, the maximal extra space needed
for the tree transformation is h pages. So by increasing
the threshold, we can rebuild a smaller CF tree with a
litnited extra memory.

Theorem 5.1 (Reducibility Theorem:): Assume
we reburld CF tree t,41 of threshold T,y from CF tree
t, of threshold T, by the above algorithm, and let S, and
Siq1 be the sizes of t, and t,4q respectwely. If Tyo1 > T,.
then Sip1 < 5, and the transformation from t, to t,
needs at most h extra pages of memory, wherve h s the
hewght of t,.

5.1.2 Threshold Values
A good choice of threshold value can greatly reduce the

number of rebuilds. Since the initial threshold value Th
1s increased dynamically, we can adjust for its being too
low. But if the initial Tp is too high, we will obtain a
less detailed CF tree than is feasible with the available
memory. So Ty should be set conservatively. BIRCH
sets it to zero by default; a knowledgeable user could
change this.

3Bither absorbed by an existing leaf entry, or created as a new
leaf entry without splitting,.



Suppose that T, turns out to be too small, and we
subsequently run out of memory after N, data points
have been scanned, and (, leaf entries have been formed
(each satisfying the threshold condition wrt. T;). Based
on the portion of the data that we have scanned and the
tree that we have built up so far, we need to estimate
the next threshold value T,;,. This estimation is a
difficult problem, and a full solution is beyond the scope
of this paper. Currently, we use the following heuristic
approach:

I.We try to choose 7,41 so that N,y; = Min(2N,, N).
That is, whether N is known, we choose to estimnate
T.4+1 at most in proportion to the data we have seen
thus far.

2. Intuitively, we want to increase threshold based on
some measure of volume. There are two distinct
notions of volume that we use in estimating threshold.
The first is average volume, which is defined as V, = r?
where r is the average radius of the root cluster in the
CF tree, and d is the dimensionality of the space.
Intuitively, this is a measure of the space occupied by
the portion of the data seen thus far (the “footprint” of
seen data). A second notion of volume packed volume,
which is defined as V, = () x T4, where (', 1s the
number of leaf entries and 7,¢ is the maximal volume
of a leaf entry. Intuitively, this is a measure of the
actual volume occupied by the leaf clusters. Since
is essentially the sare whenever we run out of memory
(since we work with a fixed amount of memory), we
can approximate V, by T4,
We make the assumption that r grows with the
number of data points N;. By maintaining a record
of r and the number of points N;, we can estimate
r,+1 using least squares linear regression. We define
the expansion factor f Maar(l.O‘ﬂri'—‘), and use
it as a heuristic measure of how the data footprint
is growing. The use of Maz is motivated by our
observation that for most large datasets, the observed
footprint hecomes a constant quite quickly (unless
the input order is skewed). Similarly, by making
the assumption that V, grows linearly with N;, we
estimate 7;4) using least squares linear regression.

.We traverse a path from the root to a leaf in the CF
tree, always going to the child with the most points
in a “greedy” atternpt to find the most crowded leaf
node. We calculate the distance (D) between the
closest two entries on this leaf. If we want to build a
more condensed tree, it is reasonable to expect that we
should at least increase the threshold value to Dy,
so that these two entries can be merged.

-

4. We multiplied the T; 4, value obtained through linear
regression with the expansion factor f, and adjusted
it using Dpin as follows: T4y = Maz(Dpn, f *
Ti+1). To ensure that the threshold value grows
monotonically, in the very unlikely case that Tis1
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obtained thus is less than 7} then we choose 7,4, = T,
(]—Vf\,j‘l—‘)% (This is equivalent to assurning that all data
points are uniformly distributed in a d-dinensional
sphere, and is really just a crude approxiination,
however, it is rarely called for.)

5.1.3 Outlier-Handling Option

Optionally, we can use R bytes of disk space for handling
outliers, which are leaf entries of low density that are
judged to be unimportant wrt. the overall clustering
pattern. When we rebuild the CF tree by re-inserting
the old leaf entries, the size of the new tree is reduced
in two ways. First, we increase the threshold value,
thereby allowing each leaf entry to “absorbh” more
points. Second, we treat some leaf entries as potential
outliers and write them out to disk. An old leaf entry 15
considered to be a potential outlier if it has “far fewer”
data points than the average. “Far fewer”, is of course
another heuristics.

Periodically, the disk space may run out, and the
potential outliers are scanned to see if they can be re-
absorbed into the current tree without causing the tree
to grow in size. — An increase in the threshold value
or a change in the distribution due to the new data
read after a potential outlier is written out could well
mean that the potential outlier no longer qualifies as an
outlier. When all data has been scanned. the potential
outliers left in the disk space must be scanned to verify
if they are indeed outliers. If a potential outlier can not
be absorbed at this last chance, it is very likely a real
outlier and can be removed.

Note that the entire cycle — insufficient memory
triggering a rebuilding of the tree, insufficient disk space
triggering a re-absorbing of outliers, etc. — could
be repeated several times before the dataset is fully
scanned. This effort must be considered in addition to
the cost of scanning the data in order to assess the cost
of Phase 1 accurately.

5.1.4 Delay-Split Option

When we run out of main memory, it may well be the
case that still more data points can fit in the current CF
tree, without changing the threshold. However, some of
the data points that we read may require us to split
a node in the CF tree, A simple idea is to write such
data points to disk (in a manner similar to how outhers
are written), and to proceed reading the data until we
run out of disk space as well. The advantage of this
approach is that in general, more data points can fit in
the tree before we have to rebuild.

6 Performance Studies

We present a complexity analysis, and then discuss the
experiments that we have conducted on BIR(C'H (and
CLARANS) using synthetic as well as real datasets.



6.1 Analysis

First we analyze the cpu cost of Phase 1. The maximal
size of the tree is %. To insert a point, we need to follow
a path from root to leaf, touching about 1 + logpg %
nodes. At each node we must examine B entries, looking
for the “closest”; the cost per entry is proportional to
the dimension d. So the cost for inserting all data points
is O(d* N x B(1 + logp %)) In case we must rebuild
the tree, let ES be the CF entry size. There are at
most % leaf entries to re-insert, so the cost of re-
inserting leaf entries is O(d * -EA% * B(1 +logg %)) The
number of times we have to re-build the tree depends
upon our threshold heuristics. Currently, it is about
log, Nlo where the value 2 arises from the fact that we
never estimate farther than twice of the current size,
and Ny is the number of data points loaded into memory
with threshold T5. So the total cpu cost of Phase 1 is
O(dxNxB(1+logg ) +log, f-+dxE5xB(1+logp 4)).
The analysis of Phase 2 cpu cost is similar, and hence
omitted.

As for 1/O, we scan the data once in Phase 1 and
not at all in Phase 2. With the outlier-handling and
delay-split options on, there is some cost associated with
writing out outlier entries to disk and reading them
back during a rebuilt. Considering that the amount
of disk available for outlier-handling (and delay-split)
is not more than M, and that there are about log, -f;}%
re-builds, the I/O cost of Phase | is not significantly
different from the cost of reading in the dataset. Based
on the above analysis — which is actually rather
pessimistic, in the light of our experimental results —
the cost of Phases 1 and 2 should scale linearly with V.

There is no [/O in Phase 3. Since the input to
Phase 3 is bounded, the cpu cost of Phase 3 is therefore
bounded by a constant that depends upon the maximum
input size and the global algorithm chosen for this
phase. Phase 4 scans the dataset again and puts each
data point into the proper cluster; the time taken is
proportional to N % K. (However with the newest
“nearest neighbor” techniques, it can be improved
[G(:92] to be almost linear wrt. N.)

6.2 Synthetic Dataset Generator
To study the sensitivity of BIRCH to the characteristics
of a wide range of input datasets, we have used a
collection of synthetic datasets generated by a generator
that we have developed. The data generation is
controlled by a set of parameters that are summarized
in Table 1.

Each dataset consists of K clusters of 2-d data points.
A cluster is characterized by the number of data points
in it(n), its radius(r), and its center(c). n is in the
range of [n;,n;], and r is in the range of [r;,r]*. Once
placed, the clusters cover a range of values in each

4Note that when n; = nj, the number of points is fixed and
when r; = r, the radius is fixed.
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Parameter [ Values or Ranges H

Pattern grid, sine, random
Number of clusters K 4 .. 256

n; (Lower n) 0 .. 2500

nyp, (Higher n) 50 .. 2500

r; (Lower r) 0.. V2

ry, (Higher r) V2 .. V32

Distance multiplier kg 4 (grid only)
Number of cycles n. 4 (sine only)

Noise rate rn (%) 0. 10

Input order o randomized, ordered

Table 1. Data Generation Parameters and Their Values
or Ranges Ezperimented

dimension. We refer to these ranges as the “overview”
of the dataset.

The location of the center of each cluster is deter-
mined by the pattern parameter. Three patterns —
grid, sine, and random — are currently supported by
the generator. When the grid pattern is used, the clus-
ter centers are placed on a /K x+/K grid. The distance
between the centers of neighboring clusters on the same
row/column is controlled by kg, and is set to kgy—‘%r—"—l.

This leads to an overview of [0,v/A'k,"E"2] on both
dimensions. The sine pattern places the cluster cen-
ters on a curve of sine function. The K clusters are
divided into n. groups, each of which is placed on a
different cycle of the sine function. The z location of
the center of cluster ¢ is 2m¢ whereas the y location is
£y sine(?n‘i/(%)). The overview of a sine dataset is
therefore [0,27K] and [—;{%,-}—;{}i] on the z and y di-
rections respectively. The random pattern places the
cluster centers randomly. The overview of the dataset is
[0,K] on both dimensions since the the z and y locations
of the centers are both randomly distributed within the
range [0,K].

Once the characteristics of each cluster are deter-
mined, the data points for the cluster are generated ac-
cording to a 2-d independent normal distribution whose
mean is the center ¢, and whose variance in each di-
mension is %-. Note that due to the properties of the
normal distribution, the maximum distance between a
point in the cluster and the center is unbounded. In
other words, a point may be arbitrarily far from its be-
longing cluster. So a data point that belongs to cluster
A may be closer to the center of cluster B than to the
center of A, and we refer to such points as “outsiders”.

In addition to the clustered data points, noise in the
form of data points uniformly distributed throughout
the overview of the dataset can be added to the dataset.
The parameter r, controls the percentage of data points
in the dataset that are considered noise.

The placement of the data points in the dataset
is controlled by the order parameter 0. When the
randornized option is used, the data points of all clusters
and the noise are randomized throughout the entire

2
r



[[ Scope ]| Parameter | Default Value 1
Global || Memory (M) 80x1024 bytes
Disk (R) 20% M
Distance def. D2
Quality def. (D)
Threshold def. threshold for D
Phasel Initial threshold | 0.0
Delay-split on
Page size (P) 1024 bytes
Outlier-handling | on
Qutlier def. Leaf entry which
contains < 25% of
the average number
of points per leaf
entry
Phase3 || Input range 1000
Algorithm Adapted HC
Phased4 || Refinement pass | 1
Discard-outlier off
Outlier def. Data point whose
Euclidian distance
to the closest seed
is larger than twice
of the radius of
that cluster
Table 2: BIRC'H Parameters and Thew Default Values

dataset. Whereas when the ordered option is selected.
the data points of a cluster are placed together, the
clusters are placed in the order they are generated, and
the noise is placed at the end.

6.3 Parameters and Default Setting

BIRC'H is capable of working under various settings.
Table 2 lists the parameters of BIRCH, their effecting
scopes and their default values.  Unless specified
explicitly otherwise, an experiments is conducted under
this default setting.

M was selected to be 80 kbytes which is about 5%
of the dataset size in the base workload used in our
experitnents. Since disk space (R) is just used for
outliers, we assume that R < M and set B = 20%
of M. The experiments on the effects of the 5 distance
metrics in the first 3 phases[ZRL95] indicate that (1)
using )3 in Phases 1 and 2 results in a much higher
ending threshold, and hence produces clusters of poorer
quality; {2) however, there is no distinctive performance
difference among the others. So we decided to choose
D2 as default. Following Statistics tradition, we choose
“weighted average diameter” (denoted as D) as quality
measurement. The smaller D) is, the better the quality
is. The threshold is defined as the threshold for cluster
diameter as default.

In Phase 1, the initial threshold is default to 0. Based
on a study of how page size affects performance[ZRL95],
we selected P = 1024. The delay-split option is on
so that given a threshold, the CF tree accepts more
data points and reaches a higher capacity. The outlier-
handling option is on so that BIRCH can remove outliers
and concentrate on the dense places with the given
amount of resources. For simplicity, we treat a leaf

i1l

entry of which the number of data points ig less than
a quarter of the average as an outlier.

In Phase 3, most global algorithins can handle 1000
objects quite well. So we default the input range as
1000. We have chosen the adapted H( algorithm to use
here. We decided to let Phase 4 refine the clusters only
once with its discard-outlier option off, so that all data
points will be counted in the quality measurement for
fair comparisons.

6.4 Base Workload Performance

The first set of experiments was to evaluate the ability of
BIRC'H to cluster various large datasets. All the times
are presented in second in this paper. Three synthetic
datasets, one for each pattern, were used. Table 3
presents the generator settings for them. The weighted
average diameters of the actual clusters® | Dy. are also
included in the table.

Fig. 6 visualizes the actual clusters of DS1 by plotting
a cluster as a circle whose center is the centroid, radius
1s the cluster radius, and label is the number of points in
the cluster. The BIRCH clusters of DSI are presented
in Fig. 7. We observe that the BIRC'H clusters are
very similar to the actual clusters in terms of location,
number of points, and radii. The maximal and average
difference between the centroids of an actual cluster
and its corresponding BIRCH cluster are 0.17 and 0.07
respectively. The number of points in a BIRC'H cluster
is no more than 4% different from the corresponding
actual cluster. The radii of the BIRC'H clusters (ranging
from 1.25 to 1.40 with an average of 1.32) are close to,
those of the actual clusters (1.41). Note that all the
BIRCH radii are smaller than the actual radii. This
is because BIRCH assigns the “cutsiders” of an actual
clusters to a proper BIRC'H cluster. Similar conclusions
can be reached by analyzing the visual presentations
of DS2 and DS3 (but omitted here due to the lack of
space).

As suminarized in Table 4, it toock BIRCH less than
50 seconds (on an HP 9000/720 workstation) to cluster
100,000 data points of each dataset. The pattern of the
dataset had almost no impact on the clustering time.
Table 4 also presents the performance results for three
additional datasets — DSlo, DS20 and DS3o - which
correspond to DSI, DS2 and DS3, respectively except
that the parameter o of the generator is set to ordered.
As demonstrated in Table 4, changing the order of the
data points had almost no impact on the performance
of BIRCH.

6.5 Sensitivity to Parameters

We studied the sensitivity of BIRCH’s performance to
the change of the values of some parameters. Due to
the lack of space, here we can only present soine major
conclusions (for details, see [ZRL95]).

>From now on, we refer to the clusters generated by the
generator as the “actual clusters” whereas the clusters identified
by BIRCH as “BIRCH clusters”.



[[ Dataset ]| Generator Setting [ Dace |
DSs1 grid, K = 100,n; = np = 1000,r; = rp = V2, kg = 4,7, = 0%, 0 = randomized 2.00
DS2 sine, K = 100,n; = np = 1000,r; = rp = V2,0 = 4,7, = 0%, 0 = randomized 2.00
DS3 random, K = 100,n; = 0,np = 2000,r; = 0,7, = 4,7n = rp, = 0%, 0 = randomized 4.18

Table 3: Datasets Used as Base Workload

Initial threshold: (1) BIRCH’s performance is
stable as long as the initial threshold is not excessively
high wrt. the dataset. (2) Tp = 0.0 works well with a
little extra running time. (3} If a user does know a good
To, then she/he can be rewarded by saving up to 10%
of the time.

Page Size P: In Phase [, smaller (larger) P
tends to decrease (increase) the running time, requires
higher (lower) ending threshold, produces less (more)
but “coarser (finer)” leaf entries, and hence degrades
(improves) the quality. However with the refinement in
Phase 4, the experiments suggest that from P = 256
to 4096 , although the qualities at the end of Phase 3
are different, the final qualities after the refinement are
almost the same.

Outlier Options: BIRCH was tested on ”noisy”
datasets with all the outlier options on, and off. The
results show that with all the outlier options on, BIRCH
is not slower but faster, and at the same time, its quality
is much better.

Memory Size: In Phase 1, as memory size (or the
maximal tree size) increases, the running time increases
because of processing a larger tree per rebuilt, but only
slightly because it is done in memory; (2) more but
finer subclusters are generated to feed the next phase,
and hence results in better quality; (3) the inaccuracy
caused by insufficient memory can be compensated
to some extent by Phase 4 refinements. In another
word, BIRCH can tradeoff between memory and time
to achieve similar final quality.

6.6 Time Scalability
Two distinct ways of increasing the dataset size are used
to test the scalability of BIRCH.

Increasing the Number of Points per Cluster:
For each of DS1, DS2 and DS3, we create a range of
datasets by keeping the generator settings the same
except for changing n; and n, to change n, and hence
N. The running time for the first 3 phases, as well as
for all 4 phases are plotted against the dataset size N
in Fig. 4. Both of them are shown to grow linearly wrt.
N consistently for all three patterns.

Increasing the Number of Clusters: For each
of DS1, DS2 and DS3, we create a range of datasets
by keeping the generator settings the same except for
changing K to change N. The running time for the first
3 phases, as well as for all 4 phases are plotted against
the dataset size N in Fig. 5. Since both N and K are
growing, and Phase 4’s complexity is now O(K * N) (can
be improved to be almost linear in the future), the total
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” Dataset H Time l D ” Dataset H Time ] D ”

DS1 47.1 1.87 || DSlo 47.4 1.87
DS2 47.5 1.99 DS2o 46.4 1.99
DS3 49.5 3.39 DS30 48.4 3.26

Table 4: BIRCH Performance on Base Workload wrt.
Time, D and Input Order

[ Dataset [| Time | D ]| Dataset ﬂ Time | D i
DS1 839.5 2.11 DSlo 1525.7 | 10.75
DS2 777.5 2.56 DS2o 1405.8 | 179.23
DS3 1520.2 | 3.36 DS30 2390.5 | 6.93

Table 5: CLARANS Performance on Base Workload

wrt. Twne, D and Input Order

time is not exactly linear wrt. N. However the running
time for the first 3 phases is again confirmed to grow
linearly wrt. N consistently for all three patterns.

6.7 Comparisons of BIRCH and CLARANS

In this experiment we compare the performance of
CLARANS and BIRCH on the base workload. First
CLARANS assumes that the memory is enough for
holding the whole dataset, so it needs much more
memory than BIRCH does. In order for CLARANS
to stop after an acceptable running time, we set its
mazrneighbor value to be the larger of 50 (instead of
250) and 1.25% of K(N-K), but no more than 100 (newly
enforced upper limit recommended by Ng). Its numlocal
value is still 2. Fig. 8 visualizes the CLARANS clusters
for DSI. Comparing them with the actual clusters for
DS1 we can observe that: (1) The pattern of the location
of the cluster centers is distorted. (2) The number of
data points in a CLARANS cluster can be as many as
57% different from the number in the actual cluster. (3)
The radii of CLARANS clusters varies largely from 1.15
to 1.94 with an average of 1.44 (larger than those of the
actual clusters, 1.41). Similar behaviors can be observed
the visualization of CLARANS clusters for DS2 and DS3
(but omitted here due to the lack of space).

Table 5 summarizes the performance of ('"LARANS.
For all three datasets of the base workload, (1) CLARANS
is at least 15 times slower than BIRCH, and is sensi-
tive to the pattern of the dataset. (2) The D value
for the CLARANS clusters is much larger than that for
the BIRCH clusters. (3) The results for DSlo, DS2o,
and DS30 show that when the data points are ordered,
the time and quality of CLARANS degrade dramati-
cally. In conclusion, for the base workload, BIRCH uses
much less memory, but is faster, more accurate, and less
order-sensitive compared with CLARANS.
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6.8 Application to Real Datasets

BIRCH has been used for filtering real images. Fig. 9
are two similar images of trees with a partly cloudy sky
as the background, taken in two different wavelengths.
The top one is in near-infrared band (NIR), and the
bottom one is in visible wavelength band (VIS). Each
image contains 512x1024 pixels, and each pixel actually
has a pair of brightness values corresponding to NIR and
VIS. Soil scientists receive hundreds of such image pairs
and try to first filter the trees from the background,
and then filter the trees into sunlit leaves, shadows and
branches for statistical analysis.

We applied BIRCH to the (NIR,VIS) value pairs for
all pixels in an image (512x1024 2-d tuples) by using 400
kbytes of memory (about 5% of the dataset size) and 80
kbytes of disk space (about 20% of the mermory size),
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Figure 8: CLARANS Clusters of DS1
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and weighting NIR and VIS values equally. We obtained
5 clusters that correspond to (1) very bright part of sky.
(2) ordinary part of sky, (3) clouds, (4) sunlit leaves (5)
tree branches and shadows on the trees. This step took

284 seconds.

However the branches and shadows were too similar
to be distinguished from each other, although we could
separate them from the other cluster categories. So we
pulled out the part of the data corresponding to (5)
(146707 2-d tuples) and used BIRCH again. But this
time, (1) NIR was weighted 10 times heavier than VIS
because we observed that branches and shadows were
easier to tell apart from the NIR image than from the
VIS image; (2) BIRCH ended with a finer threshold
because 1t processed a smaller dataset with the same
amount of memory. The two clusters corresponding to
branches and shadows were obtained with 71 seconds.
Fig. 10 shows the parts of image that correspond to



Figure 9: The images taken in NIR and VIS

Figure 10: The sunlit leaves, branches and shadows

sunlit leaves, tree branches and shadows on the trees,
obtained by clustering using BIRCH. Visually, we can
see that it is a satisfactory filtering of the original image
according to the user’s intention.

7 Summary and Future Research
BIRCH 1s a clustering method for very large datasets.
[t makes a large clustering problem tractable by con-
centrating on densely occupied portions, and using a
compact summary. It utilizes measurements that cap-
ture the natural closeness of data. These measurements
can be stored and updated incrementally in a height-
balanced tree. BIRCH can work with any given amount
of memory, and the I/O complexity is a little more than
one scan of data. Experimentally, BIRCH is shown to
perform very well on several large datasets, and is signif-
icantly superior to CLARANS in terms of quality, speed
and order-sensitivity.

Proper parameter setting is important to BIRCH’s
efficiency. In the near future, we will concentrate on
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studying (1) more reasonable ways of increasing the
threshold dynamically, (2) the dynamic adjustment of
outlier criteria, (3) more accurate quality measure-
ments, and (4) data parameters that are good indica-
tors of how well BIRCH is likely to perform. We will
explore BIRCH’s architecture for opportunities of par-
allel executions as well as interactive learnings. As an
incremental algorithm, BIRCH will be able to read data
directly from a tape drive, or from network by match-
ing its clustering speed with the data reading speed. We
will also study how to make use of the clustering infor-
mation obtained to help solve problems such as storage
or query optimization, and data compression.
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