
Estimating Continuous Distributions in Bayesian Classi�ers

George H� John
Computer Science Dept�

Stanford University
Stanford� CA �����

gjohn�CS�Stanford�EDU
http���robotics�stanford�edu��gjohn�

Pat Langley
Robotics Laboratory
Stanford University
Stanford� CA �����

langley�CS�Stanford�EDU
http���robotics�stanford�edu��langley�

Abstract

When modeling a probability distribution
with a Bayesian network� we are faced with
the problem of how to handle continuous vari�
ables� Most previous work has either solved
the problem by discretizing� or assumed that
the data are generated by a single Gaussian�
In this paper we abandon the normality as�
sumption and instead use statistical methods
for nonparametric density estimation� For a
naive Bayesian classi�er� we present experi�
mental results on a variety of natural and ar�
ti�cial domains� comparing two methods of
density estimation	 assuming normality and
modeling each conditional distribution with
a single Gaussian
 and using nonparamet�
ric kernel density estimation� We observe
large reductions in error on several natural
and arti�cial data sets� which suggests that
kernel estimation is a useful tool for learning
Bayesian models�

In Proceedings of the Eleventh Conference on Uncertainty in Arti�cial

Intelligence� Morgan Kaufmann Publishers� San Mateo� ����

� Introduction

In recent years� methods for inducing probabilistic de�
scriptions from training data have emerged as a major
alternative to more established approaches to machine
learning� such as decision�tree induction and neural
networks� For example� Cooper � Herskovits �����
describe a greedy algorithm that determines the struc�
ture of a Bayesian inference network from data� while
Heckerman� Geiger � Chickering ������ Provan �
Singh ������ and others report advances on this ba�
sic approach� Bayesian networks provide a promising
representation for machine learning for the same rea�
sons they are useful in performance tasks such as di�
agnosis	 they deal explicitly with issues of uncertainty
and noise� which are central problems in any induction
task�

However� some of the most impressive results to date
have come from a much simpler � and much older �
approach to probabilistic induction known as the naive

Bayesian classi�er � Despite the simplifying assump�
tions that underlie the naive Bayesian classi�er� exper�
iments on real�world data have repeatedly shown it to
be competitive with much more sophisticated induc�
tion algorithms� For example� Clark � Niblett �����
report naive Bayes producing accuracies comparable to
those for rule�induction methods in medical domains�
and Langley� Iba � Thompson ����� found that it
outperformed an algorithm for decision�tree induction
in four out of �ve domains�

These impressive results have motivated some re�
searchers to explore extensions of naive Bayes that
lessen dependence on its assumptions but that retain
its inherent simplicity and clear probabilistic seman�
tics� Langley � Sage ����� describe a variation that
mitigates the independence assumption by eliminat�
ing predictive features that are correlated with others�
Kononenko ���� and Pazzani ����� propose an al�
ternative response to this assumption by selectively
introducing combinations of attributes into the mod�
eling process�

These and similar approaches represent an important
line of research in machine learning� the goal of which
is to discover learning methods that not only work
well on real�world data but also have clear seman�
tics� Although one means to this end is to study more
modern systems and give a Bayesian interpretation�
another research agenda begins with well�understood
methods and attempts to improve on them by remov�
ing assumptions that might hinder performance�

In this paper� we take the latter approach� beginning
with the naive Bayesian classi�er� which traditionally
makes the assumption that numeric attributes are gen�
erated by a single Gaussian distribution� Although a
Gaussian may provide a reasonable approximation to
many real�world distributions� it is certainly not al�
ways the best approximation� This suggests another
direction in which we might pro�tably extend and
improve the approach	 by investigating more general
methods for density estimation�

In the pages that follow we review Naive Bayes�
the naive Bayesian classi�er� then describe Flexible
Bayes� an extension that eschews the single Gaus�
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Figure 	 A naive Bayesian classi�er depicted as a
Bayesian network in which the predictive attributes
�X�� X�� � � �Xk� are conditionally independent given
the class attribute �C��

sian assumption in favor of kernel density estimation
�but which retains the independence assumption�� We
next discuss some important properties of kernel es�
timation that Flexible Bayes inherits� After this�
we present some hypotheses about the new method�s
behavior� followed by experiments with natural and
arti�cial domains designed to test those hypotheses�
In closing� we review some related work and suggest
some directions for future research�

� The Naive Bayesian Classi�er

As we have noted� the naive Bayesian classi�er pro�
vides a simple approach� with clear semantics� to rep�
resenting� using� and learning probabilitistic knowl�
edge� The method is designed for use in supervised
induction tasks� in which the performance goal is to
accurately predict the class of test instances and in
which the training instances include class information�

One can view such a classi�er as a specialized form of
Bayesian network� termed naive because it relies on
two important simplifying assumptions� In particular�
it assumes that the predictive attributes are condition�
ally independent given the class� and it posits that
no hidden or latent attributes in�uence the predic�
tion process� Thus� when depicted graphically� a naive
Bayesian classi�er has the form shown in Figure � in
which all arcs are directed from the class attribute to
the observable� predictive attributes �Buntine �����

These assumptions support very e�cient algorithms
for both classi�cation and learning� To see this� let
C be the random variable denoting the class of an
instance and let X be a vector of random variables
denoting the observed attribute values� Further� let c
represent a particular class label� and let x represent
a particular observed attribute value vector� Given a
test case x to classify� one simply uses Bayes� rule to
compute the probability of each class given the vector
of observed values for the predictive attributes�

p�C � cjX � x� �
p�C � c�p�X � xjC � c�

p�X � x�
��

and then predicts the most probable class� Here X � x
represents the event thatX� � x��X� � x��� � �Xk �

xk� Because the event is simply a conjunction of
attribute value assignments� and because these at�
tributes are assumed to be conditionally independent�
one obtains

p�X � xjC � c� � p�
�

i

Xi � xijC � c�

�
Y

i

p�Xi � xijC � c� �

which is simple to compute for test cases and to esti�
mate from training data� Generally one does not di�
rectly estimate the distribution in the denominator of
Equation � as it is just a normalizing factor
 instead
one ignores the denominator and then normalizes so
that the sum of p�C � cjX � x� over all classes is one�

Naive Bayes treats discrete and numeric attributes
somewhat di�erently� For each discrete attribute�
p�X � xjC � c� is modeled by a single real num�
ber between � and  which represents the probability
that the attribute X will take on the particular value x
when the class is c� In contrast� each numeric attribute
is modeled by some continuous probability distribution
over the range of that attribute�s values�

A common assumption� not intrinsic to the naive
Bayesian approach but often made nevertheless� is
that� within each class� the values of numeric at�
tributes are normally distributed� One can represent
such a distribution in terms of its mean and standard
deviation� and one can e�ciently compute the proba�
bility of an observed value from such estimates� For
continuous attributes we can write

p�X � xjC � c� � g�x
�c� �c� � where ���

g�x
�� �� �
p
���

e�
�x����

��� � ���

the probability density function for a normal �or Gaus�
sian� distribution��

The above model leaves us with a small set of param�
eters to estimate from training data� For each class
and nominal attribute� one must estimate the prob�
ability that the attribute will take on each value in
its domain� given the class� For each class and con�
tinuous attribute� one must estimate the mean and
standard deviation of the attribute given the class�
Maximum likelihood estimation of these parameters
is straightforward� The estimated probability that a
nominal random variable takes a certain value is equal
to its sample frequency � the number of times the value

�Equation � is not strictly correct� the probability that
a real�valued random variable exactly equals any value is
zero� Instead we speak about the variable lying within

some interval� p�x � X � x 	 
� �
R
x��

x

g�x�� ��dx�

By the de�nition of a derivative� lim��� p�x � X � x 	

��
 � g�x �� ��� Thus for some very small constant 
�
p�X � x� � g�x �� ���
� The factor 
 then appears in
the numerator of Equation � for each class� They cancel
out when we perform the normalization� so we may use
Equation ��
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Figure �	 The e�ect of using a single Gaussian versus a
kernel method to estimate the density of a continuous
variable�

was observed divided by the total number of observa�
tions� The maximum likelihood estimates of the mean
and standard deviation of a normal distribution are
the sample average and the sample standard deviation
�Schalko� �����

To clarify the estimation process� consider a small data
set in which there are two classes �� and ��� a nom�
inal attribute X� which takes values a and b� and a
continuous attribute X�� Given the �ve training cases

f��� a� �� ��� b� ���� ��� a������ ��� b������ ��� b�����g�
Naive Bayes obtains the probability estimates

p�C � �� � ���

p�X� � ajC � �� � ���

p�X� � bjC � �� � ��

p�X� � xjC � �� � g�x� ���� ���

for the positive class and analogous estimates for the
negative class� The solid curve in Figure � shows
the density function estimated for another numeric at�
tribute from a somewhat larger data set�

One can also use Bayesian estimation methods� which
commonly assume a Dirichlet prior� to estimate
the model parameters� Despite the similar names�
Bayesian estimation is less common in work on naive
Bayesian classi�ers� as there is usually much data and
few parameters� so that the �typically weak� priors are
quickly overwhelmed�

In summary�Naive Bayes provides a simple and e��
cient approach to the problem of induction� However�
it typically relies on an assumption that numeric at�
tributes obey a Gaussian distribution� which may not
hold for some domains� This suggests that one should
explore other methods for estimating continuous dis�
tributions�

Table 	 Algorithmic complexity for Naive Bayes

and Flexible Bayes� given n training cases and k
features�

Naive Bayes Flex Bayes

Operation Time Space Time Space

Train on n cases O�nk� O�k� O�nk� O�nk�

Test on m cases O�mk� O�mnk�

� Flexible Naive Bayes

We can now introduce the Flexible Bayes learning
algorithm� which is exactly the same as Naive Bayes

in all respects but one	 the method used for density
estimation on continuous attributes� Although using
a single Gaussian is the most common technique for
handling continuous variables� it is certainly not the
only one� Researchers have also explored a variety of
nonparametric density estimation methods�

We chose to investigate kernel density estimation� Re�
call that in Naive Bayes we estimate the density
of each continuous attribute as p�X � xjC � c� �
g�x� �c� �c�� Kernel estimation with Gaussian kernels
�one can use other kernel functions as well� looks much
the same� except that the estimated density is aver�
aged over a large set of kernels

p�X � xjC � c� �


n

X

i

g�x� �i� �c� � ���

where i ranges over the training points of attribute X
in class c� and �i � xi� The dashed line in �gure �
shows the kernel density estimation based on the ��
sampled points� Readers familiar with kernel methods
should note that our Equation � is equivalent to the
standard kernel density formula p�X � xjC � c� �
�nh���

P
j K�x��i

h
�� where h � � and K � g�x� �� ��

Whereas in Naive Bayes one could estimate �c and
�c by storing only the sum of the observed x�s and
the sum of their squares� the su�cient statistics for
a normal distribution� Flexible Bayes must store
every continuous attribute value it sees during train�
ing� The only su�cient statistic for the list of �i�s
is the list of xi�s itself� �Nominal attributes� distri�
butions are still learned by storing a single number
per value that represents the sample frequency� as in
Naive Bayes�� When computing p�X � xjC � c�
for a continuous attribute to classify an unseen test
instance� Naive Bayes only had to evaluate g once�
but Flexible Bayes must perform n evaluations� one
per observed value of X in class c� This leads to some
increase in the storage and computational complexity�
as summarized in Table �

We have not yet addressed the most important issue
in kernel density estimation � the setting of the width
parameter �� As we shall see in the next section� kernel
estimation has some nice theoretical properties when



� shrinks to zero as the number of instances goes to in�
�nity� The statistical literatures reports various rules
of thumb for setting the kernel width� but each heuris�
tic makes implicit and explicit assumptions about the
density function that will be true of some distributions
and not others� In this paper we set �c � �

p
nc�

where nc is the number of training instances observed
with class c� Thus� as Flexible Bayes observes more
training points� its density estimates become increas�
ingly local�

The intuition behind Flexible Bayes is that kernel
estimation will let the method perform well in domains
that violate the normality assumption� with little cost
in domains where it holds� To understand this claim�
we must review the theoretical underpinnings of kernel
methods�

� Asymptotic properties of Flexible

Bayes

In general� density estimation involves approximating
the probability density function of a continuous ran�
dom variable� The Bayesian classi�er encounters this
problem whenever it must estimate p�XjC� for some
continuous attribute X� This is a general problem in
statistics� and a variety of methods are available for
solving it �Venables � Ripley ���� Silverman �����
In this section we discuss the theoretical properties of
kernel density estimation and their implications for the
Flexible Bayes algorithm�

Statisticians are principally concerned with the con�
sistency of a density estimate �Izenman ����

De�nition � �Strong Pointwise Consistency� If

f is a probability density function and �fn is an es�
timate of f based on n examples� then �fn is strongly
pointwise consistent if �f � f�x� almost surely for all

x� i�e�� for every �� p�limn�� j �fn�x�� f�x�j � �� � �

The strongest asymptotic result we could hope for re�
garding Flexible Bayes would be that� provided the
independence assumption holds� its estimate of p�CjX�
is strongly pointwise consistent� This would imply
that� in the limit� using the Flexible Bayes esti�
mate of p�CjX� for classi�cation produces the Bayes
optimal error rate� We will prove strong consistency
of Flexible Bayes in three steps� �rst proving that
the method provides a strongly consistent estimate of
p�XjC� when X is nominal� then proving the same
property when X is continuous� then proving that the
estimate p�CjX� is strongly consistent�

Theorem � �Strong Consistency for Nominals�
Let X�� � � � � Xn be an independent sample from a
multinomial distribution with v values� where the prob�
ability of drawing value j is pj � Let nj �

P
i Xi�j � the

number of samples of value j� Then nj�n is a strongly
consistent estimator of pj�

Proof	 This is a direct instantiation of the strong law
of large numbers �Casella � Berger �����

Theorem � �Strong Consistency for Reals�
Due to Devroye ����	
� The kernel density estimate
is strongly consistent when�

� The kernel function K must be a bona �de density
estimate � it must be nonnegative for all x� and it
must integrate to ��

� hn � � as n ��� Recall that h in the standard
notation is equivalent to our ��

� nhn �� as n���

All of these conditions are satis�ed by using Gaussian
kernels with hn � �

p
n� so each p�XjC� density esti�

mate in Flexible Bayes is strongly consistent�

Lemma � �Consistency of Products� Let the

functions �f�� � � � � �fk be strongly consistent estimates of
density functions f�� � � � � fk� Then

Q
i
�fi is a strongly

consistent estimator of
Q

i fi�

Proof	 We prove that �f� �f� is a strongly consistent es�
timator of f�f�� from which the lemma follows by in�
duction� By the de�nition of strong consistency� for
any �� and ��� p�limn�� j �f��n � f�j � ��� �  for all

x� and similarly for �f�� For �f� �f� to be strongly point�
wise consistent� p�limn�� j �f��n �f��n � f�f�j � ��� � 
must hold for all x� and this will be true whenever
�� �f� � �� �f� � ���� � �� �by some simple algebraic ma�

nipulation�� Since �f��x� and �f��x� are �nite� and since
�� and �� may be made arbitrarily small� the bound on
�� can be made to hold� giving the desired result that
�f� �f� is strongly consistent�

Theorem � �Consistency of Flexible Bayes�
Let the true conditional distribution of the class given

the attributes be p�CjX� �

Q
i
p�Xi�xijC�c�p�C�Q

i
p�Xi�xi�

� �This

is the actual conditional distribution� not our esti�
mate�
 Then the Flexible Bayes estimate �p�C �
cjX � x� is a strongly consistent estimator of p�C �
cjX � x��

Proof	 By Theorems  and �� Flexible Bayes� esti�
mates of p�XjC�� p�X�� and p�C� are strongly consis�
tent� thus by Lemma  and a related lemma regarding
the quotient of strongly consistent estimates� Flexi�
ble Bayes� estimate of p�CjX� is strongly consistent�



Table �	 Natural data set characteristics and ten�fold cross validation results� Characteristics given are set size�
number of classes� number of nominal and continuous attributes� Results given are the mean and standard
deviations of the ten cross�validation runs for Naive Bayes and Flexible Bayes� along with the signi�cance
level of a paired t test that one method is more accurate than the other� The accuracies for C��� are shown to
provide context�

Data set Size �Class �Cont �Nom Naive Flex Flex Better� C���

Breast Cancer �Wisc�� ��� � � � ����� ��� ����� ��� X ������� ����
Cleveland Heart Disease ��� � � � ����� ��� ����� ��� � ������� ����
Credit Card Application ��� � � � ����� ��� ����� ��� ����
Glass �� � � � ����� �� ����� ��� X ������� ����
Glass� �Float�Non� �� � � � ���� �� ����� ��� X ������� ����
Horse Colic ��� � � � ����� ��� ����� �� � ������� ���
Iris �� � � � ����� ��� ����� ��� ����
Labor Negotiation �� � � � ����� �� ����� �� ����
Meta�Learning ��� � � � ���� ��� ����� ��� X ������� ����
Pima Diabetes ��� � � � ���� ��� ����� ��� ���
Vehicle Silhouette ��� � � � ����� ��� ���� ��� X ������� ����

� Experimental Studies

However convincing our arguments for incorporat�
ing kernel estimation into the Bayesian classi�er� the
�nite�sample behavior of this method is ultimately an
empirical question� Within machine learning� the stan�
dard experimental method �Kibler � Langley ����
involves running a learning algorithm on a set of train�
ing data� then using the induced model to make pre�
dictions about separate test cases and measuring the
accuracy� To evaluate the behavior of the �exible
Bayesian classi�er� we designed and carried out a num�
ber of experimental studies along these lines�

��� Experiments on Natural Data

To determine the relevance of our approach to real�
world problems� we �rst selected  databases from
the UCI machine learning repository �Murphy � Aha
���� and elsewhere� Table � summarizes the number
of instances� the number of classes� and the number
of nominal and numeric attributes in each data set�
Because a sizeable fraction of each domain�s features
were numeric� they seemed likely candidates for con�
trasting the behavior of Flexible Bayes and Naive

Bayes�

For each domain� we used ten�fold cross validation to
evaluate the generalization accuracy of the two induc�
tion algorithms� That is� we randomly partitioned the
data into ten disjoint sets� then provided each algo�
rithm with nine of the sets as training data and used
the remaining set as test cases� We repeated this pro�
cess ten times using the di�erent possible test sets and
averaged the resulting accuracies� We also carried out
this procedure with C��� �Quinlan ����� a well�known
algorithm for decision�tree induction� to provide a ref�
erence point for comparison�

Table � shows the results of the runs on natural do�
mains� including the mean accuracy and standard de�
viation for each� whether one method was signi�cantly
better than the other on a paired t test� and the sig�
ni�cance level of that test� The table indicates that
Flexible Bayes was signi�cantly more accurate than
Naive Bayes in �ve of the  domains� less accurate
in two domains� and not signi�cantly di�erent in four
cases� In two domains �Glass� and Meta�Learning��
the naive scheme was signi�cantly worse than C����
whereas the �exible method did signi�cantly better�

Curiously� the two domains where Naive Bayes out�
performed Flexible Bayes were both medical do�
mains� Possibly doctors tend to de�ne diseases such
that important continuous features are roughly nor�
mal� given whether a patient has a disease� If the con�
ditional densities truly are Gaussian� Naive Bayes
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Figure �	 Systematic measurement errors in the Cleve�
land heart disease database�
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Figure �	 Learning curves testing the �rst hypothesis
about behavior when the normality assumption holds�

should perform better than Flexible Bayes �in the
small�sample scenario� since the normality assumption
is correct� To investigate further� we plotted histogram
estimates of the density of each continuous attribute
in the Cleveland heart disease dataset� conditioned on
the class� On visual inspection� we did �nd that the
distributions were roughly normal�

We were also quite surprised to discover systematic
measurement errors� Figure � shows a surprising phe�
nomenon working against the Flexible Bayes algo�
rithm	 the blood pressure of patients is sometimes
rounded to the nearest � �note the peaks at ���
��� ���� and sometimes not� There is no med�
ical reason to suspect that a human�s blood pres�
sure is likely to be a multiple of ten� but when us�
ing the standard mercury�barometer�stethoscope ap�
paratus for measuring blood pressure� it is di�cult
to get more than two signi�cant �gures� so rounding
is common �Tigrani ���� personal communication��
The smooth curve shows the Gaussian density esti�
mate� while the rough curve shows the kernel density
estimate� which is confused by the rounding errors in
recording the blood pressure of patients� We hypoth�
esized that if this attribute were removed� Flexible
Bayes and Naive Bayes would perform comparably�
We ran a ten�fold cross�validation experiment with the
blood pressure attribute removed� and found that both
methods achieved an accuracy rate of �������

��� Arti�cial Domains

The positive results on the natural domains give us
con�dence in the usefulness of Flexible Bayes as a
tool for machine learning� but since the real domains
are themselves poorly understood� scienti�cally they
do not let us draw any hard conclusions� Several of
our expectations could not be directly tested on the
natural databases� These expectations were	
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Figure �	 Learning curves for the second hypothesis
about behavior when normality is violated�

� When the normality assumption holds �when each
p�XjC� is normal�� Flexible Bayes and Naive

Bayes should exhibit the same asymptotic perfor�
mance� butNaive Bayes should reach asymptote
faster �with smaller training sets��

�� When the independence assumption holds but the
normality assumption does not� Flexible Bayes

should reach the Bayes optimal error rate while
Naive Bayes should not�

To test these hypotheses� we de�ned appropriate joint
probability distributions and then independently sam�
pled varying�sized training sets from these distribu�
tions in order to plot learning curves for the two al�
gorithms� We constructed a test set containing one
thousand instances sampled from the same distribu�
tion� which we used to evaluate the models induced
from the training sets� For each training set size� ten
independent samples were constructed� and we report
the average and standard deviation for the ten runs�

To examine the �rst hypothesis� we de�ned a joint
probability distribution over one continuous attribute
and one binary class� such that the conditional distri�
bution of the attribute given the class was Gaussian�
The learning curves in Figure � support our hypoth�
esis	 although Flexible Bayes performs worse than
Naive Bayes when the size of the training set is small�
its performance approaches that of Naive Bayes as
the training set grows�

To test the second hypothesis� we de�ned a joint prob�
ability distribution over one continuous attribute and
one binary class� such that the conditional distribution
of the attribute given the class was a mixture of two
Gaussians� The learning curves in Figure � again sup�
port our hypothesis� Naive Bayes is helpless because
it is learning with an overly parsimonious model� while
Flexible Bayes� �exibility lets it �t this distribution
as well� With a training set of ��� instances� Flex�
ible Bayes� accuracy was ������ Using numerical



integration� we estimated the Bayes optimal error rate
in this domain to be ������ The apparent impossi�
bility of the situation �namely� Flexible Bayes out�
performing the Bayes optimal error rate� is explained
by realizing that the estimate of the algorithm�s per�
formance comes from a test set of ��� instances� We
expect that� had we used an order of magnitude more
test instances� the algorithm�s error would match the
Bayes optimal error�

In summary� we have compared our Flexible Bayes

algorithm with its natural benchmark� Naive Bayes�
on a variety of natural and arti�cial domains� �nding
encouragement from the former and evidence for our
hypotheses in the latter�

� Discussion

Although our approach to Bayesian induction is novel�
it does bear some similarities to other research in ma�
chine learning and statistics� The use of density es�
timation �gures prominently in several learning algo�
rithms� Specht � Romsdahl ����� is the latest in
a series of papers on kernel estimation in the guise of
�probabilistic neural networks� In contrast to our ap�
proach� their method only handles continuous features�
and makes no independence assumptions� so that a sin�
gle d�dimensional density estimation is done per class�
rather than d one�dimensional estimations� A novel
feature is their use of the conjugate gradient algorithm
to optimize their cross�validation estimate of error over
the space of smoothing parameters �one parameter per
dimension�� This gave tremendous improvement on
some domains� and we expect that an adaptive kernel
width would improve our results as well�

A histogram is one of the oldest and simplest methods
of density estimation� Kononenko ����� reports the
use of experts to discretize continuous features� In con�
trast� Dougherty� Kohavi � Sahami ����� study sev�
eral methods for automatically discretizing continuous
features based on statistical and information�theoretic
metrics� They report that a naive Bayesian classi�
�er combined with discretization gives higher accuracy
than C���� averaged over many domains�

The algorithms explored in this paper are but two sam�
ples from a large space of possible algorithms that our
framework suggests� Figure � gives a perspective on
the work discussed in this paper� showing how Naive

Bayes and Flexible Bayes relate to each other and
to previous work�

The representational power of the �exible naive
Bayesian classi�er seems quite similar to that for Gen�
eralized Additive Models of Hastie � Tibshirani �����
for regression� Their method predicts the value of
a continuous variable� given various nominal and nu�
meric input variables� using

�y � f��
X

i

fi�xi�� �

Naive Bayes with 
Single Multivariate
Gaussian

Independence
Assumption

Gaussian
Single

General Density Estimation

Arbitrary
Dependencies

Probabilistic Neural Networks

Naive Bayes with Discretization

Standard Naive Bayes

Flexible Naive Bayes

Figure �	 The space encompassing the algorithms dis�
cussed in this paper�

where the fi are arbitrary �possibly nonlinear� func�
tions� By taking logarithms� Equation  may be trans�
formed into a generalized additive model�

Two approaches seem close to our method at �rst
glance� but upon close inspection there are impor�
tant di�erences� Geiger � Heckerman ����� present
a method for learning �Gaussian networks � which are
Bayes nets with some continuous variables estimated
by a single Gaussian distribution� in contrast to our
approach in which densities are estimated kernel esti�
mation� Kononenko ����� uses discretization with a
�fuzzy modi�cation� Let x be the value of a contin�
uous feature in a test instance� Rather than assigning
x to a single interval� Kononenko �fuzzi�es x using a
Gaussian and assigns probabilistically to several inter�
vals� The use of the Gaussian at �rst seems similar�
but in our work such kernels are used only to obtain a
smooth density estimate on the training data�

In future research� we hope to extend Flexible

Bayes to set the kernel width adaptively� Cross�
validation and other resampling schemes are relatively
cheap to use in this context� For the implementation
discussed here� the complexity of cross�validation is
O�n�k�� so a wrapper method for setting � similar to
that reported by John� Kohavi � P�eger ����� may
be employed on small� to medium�sized databases� A
further possibility is borrow Cheeseman et al��s �����
Bayesian approach to density estimation with Gaus�
sian mixtures using the EM algorithm �Dempster�
Laird � Rubin �����

� Conclusion

In this paper we reviewed the naive Bayesian classi�er
and the assumptions on which it relies� including the
common use of a single Gaussian distribution for each
predictive attribute� We argued that this assumption
might be violated in some domains� and we proposed
instead to use a kernel estimation method to approx�
imate more complex distributions� Experiments with
natural domains showed that� in a number of cases�



this �exible Bayesian classi�er generalizes better than
the version that assumes a single Gaussian� Experi�
mental studies with arti�cial data further suggest that
the approach behaves as expected in two important
scenarios� Although more work remains to be done�
our results to date indicate that the �exible Bayesian
classi�er constitutes a promising addition to the reper�
toire of probabilistic induction algorithms�
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