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Abstract

To preserve client privacy in the data mining process, a
variety of techniques based on random perturbation of in-
dividual data records have been proposed recently. In this
paper, we present FRAPP, a generalized matrix-theoretic
framework of random perturbation, which facilitates a sys-
tematic approach to the design of perturbation mechanisms
for privacy-preserving mining. Specifically, FRAPP is used
to demonstrate that (a) the prior techniques differ only in
their choices for the perturbation matrix elements, and (b)
a symmetric perturbation matrix with minimal condition
number can be identified, maximizing the accuracy even
under strict privacy guarantees. We also propose a novel
perturbation mechanism wherein the matrix elements are
themselves characterized as random variables, and demon-
strate that this feature provides significant improvements in
privacy at only a marginal cost in accuracy.

The quantitative utility of FRAPP, which applies to
random-perturbation-based privacy-preserving mining in
general, is evaluated specifically with regard to frequent-
itemset mining on a variety of real datasets. Our exper-
imental results indicate that, for a given privacy require-
ment, substantially lower errors are incurred, with respect
to both itemset identity and itemset support, as compared to
the prior techniques.

1. Introduction

The knowledge models produced through data mining
techniques are only as good as the accuracy of their input
data. One source of data inaccuracy is when users, due
to privacy concerns, deliberately provide wrong informa-
tion. This is especially common with regard to customers
asked to provide personal information on Web forms to E-
commerce service providers.

To encourage users to submit correct inputs, a variety of
privacy-preserving data mining techniques have been pro-
posed in the last few years (e.g. [1, 5, 10, 14]). Their goal

is to ensure the privacy of the raw local data but, at the
same time, to support accurate reconstruction of the global
data mining models. Most of the techniques are based on
a data perturbation approach, wherein the user data is dis-
torted in a probabilistic manner that is disclosed to the even-
tual miner. For example, in the MASK technique [14],
intended for privacy-preserving association-rule mining on
sparse boolean databases, each bit in the original user trans-
action vector is independently flipped with a parametrized
probability.

1.1. The FRAPP Framework

The trend in the prior literature has been to propose spe-
cific perturbation techniques, which are then analyzed for
their privacy and accuracy properties. We move on, in this
paper, to proposing FRAPP1 (FRamework for Accuracy in
Privacy-Preserving mining), a generalized matrix-theoretic
framework that facilitates a systematic approach to the de-
sign of random perturbation schemes for privacy-preserving
mining. It supports “amplification”, a particularly strong
notion of privacy proposed in [9], which guarantees strict
limits on privacy breaches of individual user information,
independent of the distribution of the original data. The
distinguishing feature of FRAPP is its quantitative charac-
terization of the sources of error in random data perturba-
tion and model reconstruction processes.

We first demonstrate that the prior techniques differ only
in their choices for the elements in the FRAPP perturbation
matrix. Next, and more importantly, we show that through
appropriate choices of matrix elements, new perturbation
techniques can be constructed that provide highly accurate
mining results even under strict privacy guarantees. In fact,
we identify a perturbation matrix with provably minimal
condition number (among the class of symmetric positive
definite matrices), resulting in the best accuracy under the
given constraints. An efficient implementation for this opti-
mal perturbation matrix is also presented.

1Also the name of a popular coffee-based beverage, where the ingredi-
ents are perturbed and hidden under foam.
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We then investigate, for the first time, the possibility of
randomizing the perturbation parameters themselves. The
motivation is that it could result in increased privacy levels
since the actual parameter values used by a specific client
will not be known to the data miner. This approach has
the obvious downside of perhaps reducing the model recon-
struction accuracy. However, our investigation shows that
the tradeoff is very attractive in that the privacy increase is
substantial whereas the accuracy reduction is only marginal.
This opens up the possibility of using FRAPP in a two-step
process: First, given a user-desired level of privacy, iden-
tifying the deterministic values of the FRAPP parameters
that both guarantee this privacy and also maximize the ac-
curacy; and then, (optionally) randomizing these parame-
ters to obtain even better privacy guarantees at a minimal
cost in accuracy.

The FRAPP model is valid for random-perturbation-
based privacy-preserving mining in general. Here, we focus
on its applications to categorical databases, where attribute
domains are finite. Note that boolean data is a special case
of this class, and further, that continuous-valued attributes
can be converted into categorical attributes by partitioning
the domain of the attribute into fixed length intervals.

To quantitatively assess FRAPP’s utility, we specifically
evaluate the performance of our new perturbation mecha-
nisms on the popular mining task of identifying frequent
itemsets, the cornerstone of association rule mining [3].
Our experiments on a variety of real datasets indicate that
both identity and support errors are substantially lower than
those incurred by the prior privacy-preserving techniques.

Another important difference with regard to the prior
techniques is that their accuracy degrades with increas-
ing itemset length, whereas FRAPP’s accuracy is robust to
this parameter. Therefore, it is particularly well-suited to
datasets where the lengths of the maximal frequent itemsets
are comparable to the attribute cardinality of the dataset.

1.2. Contributions

In a nutshell, the work presented here provides a mathe-
matical foundation for “raising the bar, with respect to both
accuracy and privacy, in strict privacy-preserving mining”.
Specifically, our main contributions are as follows:

• FRAPP, a generalized matrix-theoretic framework for
random perturbation and mining model reconstruction;

• Using FRAPP to derive new perturbation mechanisms
for minimizing the model reconstruction error while
ensuring strict privacy guarantees;

• Introducing the concept of randomization of perturba-
tion parameters, and thereby deriving enhanced pri-
vacy;

• Efficient implementations of the perturbation tech-
niques for the proposed mechanisms;

• Quantitatively demonstrating the utility of our schemes
in the context of association rule mining.

2. The FRAPP Framework

In this section, we describe the construction of the
FRAPP framework, and its quantification of privacy and ac-
curacy measures.

Data Model. We assume that the original database U con-
sists of N independent and identically distributed records,
with each record having M categorical attributes. The do-
main of attribute j is denoted by Sj

U , resulting in the domain

SU of a record in U being given by SU =
∏M

j=1
Sj

U . We

map the domain SU to the index set IU = {1, . . . , |SU |},
thereby modeling the database as a set of N values from
IU . If we denote the ith record of U as Ui, then U =
{Ui}N

i=1, Ui ∈ IU .
To make this concrete, consider a database U with 3 cat-

egorical attributes Age, Sex, and Education having the fol-
lowing category values:

Age Child, Adult, Senior
Sex Male, Female

Education Elementary, Graduate

For this schema, M = 3, S1
U={Child, Adult, Senior},

S2
U={Male, Female}, S3

U={Elementary, Graduate}, SU =
S1

U × S2
U × S3

U , |SU | = 12. The domain SU is indexed by
the index set IU = {1, ..., 12}, and hence the set of tuples

U U
Child Male Elementary
Child Male Graduate
Child Female Graduate
Senior Male Elementary

maps
to

1
2
4
9

Perturbation Model. We consider the privacy situation
wherein the customers trust no one except themselves, that
is, they wish to perturb their records at their client sites be-
fore the information is sent to the miner, or any intermediate
party. This means that perturbation is done at the granular-
ity of individual customer records Ui, without being influ-
enced by the contents of the other records in the database.

For this situation, there are two possibilities: (a) A sim-
ple independent attribute perturbation, wherein the value of
each attribute in the user record is perturbed independently
of the rest; or (b) A more generalized dependent attribute
perturbation, where the perturbation of each attribute may

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005) 
1084-4627/05 $20.00 © 2005 IEEE 



be affected by the perturbations of the other attributes in the
record. Most of the prior perturbation techniques, including
[9, 10, 14], fall into the independent attribute perturbation
category. The FRAPP framework, however, includes both
kinds of perturbation in its analysis.

Let the perturbed database be V = {V1, . . . , VN}, with
domain SV , and corresponding index set IV . For example,
given the sample database U discussed above, and assuming
that each attribute is distorted to produce a value within its
original domain, the distortion may result in

V V
5
7
2

12

which
maps

to

Adult Male Elementary
Adult Female Elementary
Child Male Graduate
Senior Female Graduate

Let the probability of an original customer record Ui =
u, u ∈ IU being perturbed to a record Vi = v, v ∈ IV be
p(u → v), and let A denote the matrix of these transition
probabilities, with Avu = p(u → v). This random process
maps to a Markov process, and the perturbation matrix A
should therefore satisfy the following properties [15]:

Avu ≥ 0 and
∑

v∈IV

Avu = 1 ∀u ∈ IU , v ∈ IV (1)

Due to the constraints imposed by Equation 1, the domain
of A is a subset of R|SU |×|SV |. This domain is further re-
stricted by the choice of perturbation method. For example,
for the MASK technique [14] mentioned in the Introduc-
tion, all the entries of matrix A are decided by the choice of
a single parameter, namely, the flipping probability.

In this paper, we explore the preferred choices of A to
simultaneously achieve privacy guarantees and high accu-
racy, without restricting ourselves ab initio to a particular
perturbation method.

2.1. Privacy Guarantees

The miner receives the perturbed database V , and the
perturbation matrix A, and attempts to reconstruct the orig-
inal probability distribution of database U . In this context,
the prior probability of a property of a customer’s private
information is the likelihood of the property in the absence
of any knowledge about the customer’s private information.
On the other hand, the posterior probability is the likeli-
hood of the property given the perturbed information from
the customer and the knowledge of the prior probabilities
through reconstruction from the perturbed database. As
discussed in [9], in order to preserve the privacy of some
property of a customer’s private information, the posterior
probability of that property should not be unduly different
to that of the prior probability of the property for the cus-
tomer. This notion of privacy is quantified in [9] through

the following results, where ρ1 and ρ2 denote the prior and
posterior probabilities, respectively:

Privacy Breach. An upward ρ1-to-ρ2 privacy breach ex-
ists with respect to property Q if ∃v ∈ SV such that

P [Q(Ui)] ≤ ρ1 and P [Q(Ui)|R(Ui) = v] ≥ ρ2.

Conversely, a downward ρ2-to-ρ1 privacy breach exists with
respect to property Q if ∃v ∈ SV such that

P [Q(Ui)] ≥ ρ2 and P [Q(Ui)|R(Ui) = v] ≤ ρ1.

Amplification. A randomization operator R(u) is at most
γ-amplifying for v ∈ SV if

∀u1, u2 ∈ SU :
p[u1 → v]
p[u2 → v]

≤ γ

where γ ≥ 1 and ∃u : p[u → v] > 0. Operator R(u)
is at most γ-amplifying if it is at most γ-amplifying for all
suitable v ∈ SV .

Breach Prevention. Let R be a randomization operator,
v ∈ SV be a randomized value such that ∃u : p[u →
v] > 0, and 0 < ρ1 < ρ2 < 1 be two probabilities as
per the privacy breach definition above. Then, if R is at
most γ-amplifying for v, revealing “R(u) = v” will cause
neither upward (ρ1-to-ρ2) nor downward (ρ2-to-ρ1) privacy
breaches with respect to any property if the following con-
dition is satisfied:

ρ2(1 − ρ1)
ρ1(1 − ρ2)

> γ

If this situation holds, R is said to support (ρ1, ρ2) privacy
guarantees.

From the above results of [9], we can derive for our for-
mulation, the following condition on the perturbation ma-
trix A in order to support (ρ1, ρ2) privacy:

Avu1

Avu2

≤ γ <
ρ2(1 − ρ1)
ρ1(1 − ρ2)

∀u1, u2 ∈ IU , ∀v ∈ IV (2)

That is, the choice of perturbation matrix A should follow
the restriction that the ratio of any two matrix entries should
not be more than γ.

2.2. Reconstruction Model

We now analyze how the distribution of the original
database is reconstructed from the perturbed database. As
per the perturbation model, a client Ci with data record
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Ui = u, u ∈ IU generates record Vi = v, v ∈ IV

with probability p[u → v]. This event of generation of v
can be viewed as a Bernoulli trial with success probability
p[u → v]. If we denote the outcome of the ith Bernoulli
trial by the random variable Y i

v , the total number of suc-
cesses Yv in N trials is given by the sum of the N Bernoulli
random variables:

Yv =
N∑

i=1

Y i
v (3)

That is, the total number of records with value v in the per-
turbed database is given by Yv .

Note that Yv is the sum of N independent but non-
identical Bernoulli trials. The trials are non-identical be-
cause the probability of success varies from trial i to trial
j, depending on the values of Ui and Uj , respectively. The
distribution of such a random variable Yv is known as the
Poisson-Binomial distribution [16].

From Equation 3, the expectation of Yv is given by

E(Yv) =
N∑

i=1

E(Y i
v ) =

N∑
i=1

P (Y i
v = 1) (4)

Using Xu to denote the number of records with value u in
the original database, and noting that P (Y i

v = 1) = p[u →
v] = Avu for Ui = u, we get

E(Yv) =
∑

u∈IU

AvuXu (5)

Let X = [X1X2 · · ·X|SU |]T , Y = [Y1Y2 · · ·Y|SV |]T .
Then, the following expression is obtained from Equation 5:

E(Y ) = AX (6)

At first glance, it may appear that X , the distribution
of records in the original database (and the objective of
the reconstruction exercise), can be directly obtained from
the above equation. However, we run into the difficulty
that the data miner does not possess E(Y ), but only a
specific instance of Y , with which he has to approximate
E(Y ).2 Therefore, we resort to the following approxima-
tion to Equation 6:

Y = AX̂ (7)

where X is estimated as X̂ . This is a system of |SV | equa-
tions in |SU | unknowns. For the system to be uniquely
solvable, a necessary condition is that the space of the
perturbed database is a superset of the original database
(i.e. |SV | ≥ |SU |). Further, if the inverse of matrix A exists,
the solution of this system of equations is given by

X̂ = A−1Y (8)

2If multiple distorted versions happen to be provided, then E(Y ) is
approximated by the observed average of these versions.

providing the desired estimate of the distribution of records
in the original database. Note that this estimation is unbi-
ased because E(X̂) = A−1E(Y ) = X .

2.3. Estimation Error

To analyze the error in the above estimation process,
the following well-known theorem from linear algebra [15]
comes in handy:

Theorem 2.1 Given an equation of the form Ax = b and
that the measurement of b is inexact, the relative error in the
solution x = A−1b satisfies

‖ δx ‖
‖ x ‖ ≤ c

‖ δb ‖
‖ b ‖

where c is the condition number of matrix A.

For a positive-definite matrix, c = λmax/λmin, where
λmax and λmin are the maximum and minimum eigen-
values of matrix A, respectively. Informally, the condition
number is a measure of the sensitivity of a matrix to numer-
ical operations. Matrices with condition numbers near one
are said to be well-conditioned, i.e. stable, whereas those
with condition numbers much greater than one (e.g. 105 for
a 5 ∗ 5 Hilbert matrix [15]) are said to be ill-conditioned,
i.e. highly sensitive.

From Equations 6, 8 and Theorem 2.1, we have

‖ X̂ − X ‖
‖ X ‖ ≤ c

‖ Y − E(Y ) ‖
‖ E(Y ) ‖ (9)

which means that the error in estimation arises from two
sources: First, the sensitivity of the problem, indicated by
the condition number of matrix A; and, second, the devia-
tion of Y from its mean, indicated by the variance of Y .

As discussed previously, Yv is a Poisson-Binomial dis-
tributed random variable. Using the well-known expression
for variance of a Poisson-Binomial random variable [16],
the variance of Yv is computed to be

V ar(Yv) = AvX(1− 1
N

AvX)−
∑
u∈IU

(Avu− 1
N

AvX)2Xu

which depends on the perturbation matrix A and the dis-
tribution X of records in the original database. Thus the
effectiveness of the privacy preserving method is critically
dependent on the choice of matrix A.

3. Choice of Perturbation Matrix

The perturbation techniques proposed in the literature
primarily differ in their choices for perturbation matrix A.
For example,
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• MASK [14] uses a matrix A with

Avu = pk(1 − p)Mb−k (10)

where Mb is the number of boolean attributes when
each categorical attribute j is converted into | Sj

U |
boolean attributes, (1 − p) is the bit flipping proba-
bility for each boolean attribute, and k is the number
of attributes with matching bits between the perturbed
value v and the original value u.

• The cut-and-paste (C&P) randomization operator [10]
employs a matrix A with

Avu =
MX

z=0

pM [z]

·
min{z,lu,lv}X

q=max{0,z+lu−M,lu+lv−Mb}

`
lu
q

´`
M−lu
z−q

´
`

M
z

´
·
 

Mb − lu
lv − q

!
ρ(lv−q)(1 − ρ)(Mb−lu−lv+q)

(11)

where

pM [z] =

min{K,z}X
w=0

 
M − w

z − w

!
ρ(z−w)(1 − ρ)(M−z)

·


1 − M/(K + 1) if w = M & w < K
1/(K + 1) o.w.

Here lu and lv are the number of 1 bits in the origi-
nal record u and its corresponding perturbed record v,
respectively, while K and ρ are operator parameters.

To enforce strict privacy guarantees, the choice of listed
parameters for the above methods are bounded by the con-
straints, given in Equations 1 and 2, on the values of the
elements of the perturbation matrix A. It turns out that for
practical values of privacy requirements, the resulting ma-
trix A for these schemes is extremely ill-conditioned – in
fact, the condition numbers in our experiments were of the
order of 105 and 107 for MASK and C&P, respectively.

Such ill-conditioned matrices make the reconstruction
very sensitive to the variance in the distribution of the per-
turbed database. Thus, it is important to carefully choose
the matrix A such that it is well-conditioned (i.e has a low
condition number). If we decide on a distortion method
apriori, as in the earlier techniques, then there is little
room for making specific choices of perturbation matrix A.
Therefore, we take the opposite approach of first designing
matrices of the required type, and then devising perturbation
methods that are compatible with these matrices.

To choose a suitable matrix, we start from the intuition
that for γ = ∞, the obvious matrix choice is the unity ma-
trix, which both satisfies the constraints on matrix A (Equa-
tions 1 and 2), and has the lowest possible condition num-
ber, namely, 1. Hence, for a given γ, we can choose the
following matrix:

Aij =
{

γx if i = j
x o.w.

where x =
1

γ + (|SU | − 1)
(12)

which is of the form

x


γ 1 1 . . .
1 γ 1 . . .
1 1 γ . . .
...

...
...

. . .


It is easy to see that the above matrix, which incidentally
is symmetric and Toeplitz [15], also satisfies the conditions
given by Equations 1 and 2. Further, its condition number

can be algebraically computed to be 1 +
| SU |
γ − 1

. At an

intuitive level, this matrix implies that the probability of a
record u remaining as u after perturbation is γ times the
probability of its being distorted to some v 
= u. For ease of
exposition, we will hereafter informally refer to this matrix
as the “gamma-diagonal matrix”.

At this point, an obvious question is whether it is possi-
ble to design matrices that have even lower condition num-
ber than the gamma-diagonal matrix. In [6], we prove that
the gamma-diagonal matrix has the lowest possible condi-
tion number among the class of symmetric perturbation ma-
trices satisfying the constraints of the problem, that is, it is
an optimal choice (albeit non-unique).

4. Randomizing the Perturbation Matrix

The estimation model in the previous section implic-
itly assumed the perturbation matrix A to be deterministic.
However, it appears intuitive that if the perturbation matrix
parameters were themselves randomized, so that each client
uses a perturbation matrix that is not specifically known to
the miner, the privacy of the client will be further increased.
Of course, it may also happen that the reconstruction accu-
racy suffers in this process.

In this section, we explore this tradeoff, by replacing the
deterministic matrix A with randomized matrix Ã, where
each entry Ãvu is a random variable with E(Ãvu) = Avu.
The values taken by the random variables for a client Ci

provide the specific parameter settings for her perturbation
matrix.
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4.1. Privacy Guarantees

Let Q(Ui) be a property of client Ci’s private informa-
tion, and let record Ui = u be perturbed to Vi = v. De-
note the prior probability of Q(Ui) by P (Q(Ui)). Then, on
seeing the perturbed data, the posterior probability of the
property is calculated to be:

P (Q(Ui)|Vi = v) =
X
Q(u)

PUi|Vi
(u|v)

=
X
Q(u)

PUi(u)PVi|Ui
(v|u)

PVi(v)

When a deterministic perturbation matrix A is used for all
clients, then ∀i PVi|Ui

(v|u) = Avu, and hence

P (Q(Ui)|Vi=v)=

P
Q(u) PUi

(u)Avu
P

Q(u) PUi
(u)Avu+

P
¬Q(u) PUi

(u)Avu

As discussed in [9], the data distribution PUi can, in
the worst case, be such that P (Ui = u) > 0 only if
{u ∈ IU |Q(u) and Avu = maxQ(u′) Avu′} or {u ∈
IU |¬Q(u) and Avu = min¬Q(u′) Avu′}. For the deter-
ministic gamma-diagonal matrix, maxQ(u′) Avu′ = γx and
min¬Q(u′) Avu′ = x, resulting in

P (Q(Ui)|Vi = v) =
P (Q(u)) · γx

P (Q(u)) · γx + P (¬Q(u))x

Since the distribution PU is known through reconstruction,
the above posterior probability can be determined by the
miner. For example, if P (Q(u)) = 5%, and γ = 19, the
posterior probability works out to 50% for perturbation with
the gamma-diagonal matrix.

But, in the randomized matrix case, where PVi|Ui
(v|u)

is a realization of random variable Ã, only its distribution
(and not the exact value for a given i) is known to the miner.
This means that posterior probability computations like the
one shown above cannot be made by the miner for a given
record Ui. To make this concrete, consider a randomized
matrix Ã such that

Ãuv =
{

γx + r if u = v
x − r

|SU |−1 o.w. (13)

where x = 1
γ+|SU |−1 and r is a random variable uniformly

distributed between [−α, α]. Here, the worst case posterior
probability for a record Ui is a function of the value of r,
and is given by

ρ2(r) = P (Q(u)|v)

=
P (Q(u)) · (γx + r)

P (Q(u)) · (γx + r) + P (¬Q(u))(x− r
|SU |−1

)

Therefore, only the posterior probability range, i.e.
[ρ−2 , ρ+

2 ] = [ρ2(−α), ρ2(+α)], and the distribution over this

range, can be determined by the miner. For example, for the
scenario where P (Q(u)) = 5%, γ = 19, and α = γx/2,
the posterior probability lies in the range [33%, 60%] with
its probability of being greater than 50% (ρ2 at r = 0) equal
to its probability of being less than 50%.

4.2. Reconstruction Model

With minor modifications, the reconstruction model
analysis for the randomized perturbation matrix Ã can be
carried out similar to that done earlier in Section 2.2 for the
deterministic matrix A (the complete details are available in
[6]). At the end of this analysis, we find that the estimation
error is bounded by

‖ X̂ − X ‖
‖ X ‖ ≤ c

‖ Y − E(E(Y |Ã)) ‖
‖ E(E(Y |Ã)) ‖ (14)

where c is the condition number of perturbation matrix A =
E(Ã).

We now compare these bounds with the corresponding
bounds of the deterministic case. Firstly, note that, due to
the use of the randomized matrix, there is a double expecta-
tion for Y on the RHS of the inequality, as opposed to the
single expectation in the deterministic case. Secondly, only
the numerator is different between the two cases since we
can easily show that E(E(Y |Ã)) = AX . The numerator
can be bounded by

‖ Y − E(E(Y |Ã)) ‖
= ‖ (Y − E(Y |Ã)) + (E(Y |Ã) − E(E(Y |Ã))) ‖
≤ ‖ Y − E(Y |Ã) ‖ + ‖ E(Y |Ã) − E(E(Y |Ã)) ‖

Here, ‖ Y −E(Y |Ã) ‖ denotes the variance of random vari-
able Y . Since Yv , as discussed before, is Poisson-Binomial
distributed, its variance is given by [16]

V ar(Yv |Ã) = Npv −
∑

i

(pi
v)2 (15)

where pv = 1
N

∑
i pi

v and pi
v = P (Y i

v = 1|Ã).
It is easily seen (by elementary calculus or induction)

that among all combinations {pi
v} such that

∑
i pi

v = npv ,
the sum

∑
i (pi

v)
2 assumes its minimum value when all pi

v

are equal. It follows that, if the average probability of suc-
cess pv is kept constant, V ar(Yv) assumes its maximum
value when p1

v = · · · = pN
v . In other words, the variabil-

ity of pi
v, or its lack of uniformity, decreases the magnitude

of chance fluctuations [11]. By using random matrix Ã in-
stead of deterministic A, we increase the variability of pi

v

(now pi
v assumes variable values for all i), hence decreas-

ing the fluctuation of Yv from its expectation, as measured
by its variance. In short, ‖ Y − E(Y |Ã) ‖ is likely to be
decreased as compared to the deterministic case, thereby re-
ducing the error bound.
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On the other hand, the value of the second term:
‖ E(Y |Ã) − E(E(Y |Ã)) ‖, which depends upon the vari-
ance of the random variables in Ã, was 0 in the deterministic
case, but is now positive. Thus, the error bound is increased
by this term.

Overall, we have a tradeoff situation here, and as shown
later in our experiments of Section 7, the tradeoff turns out
such that the two opposing terms almost cancel each other
out, making the error only marginally worse than the deter-
ministic case.

5. Implementation of Perturbation Algorithm

To implement the perturbation process discussed in the
previous sections, we effectively need to generate for each
Ui = u, a discrete distribution with PMF P (v) = Avu and
CDF F (v) =

∑
i≤v Aiu, defined over v = 1, . . . , | SV |.

While a direct implementation results in algorithmic com-
plexity that is proportional to the product of the cardinalities
of the attribute domains (see [6] for details), we present be-
low an efficient algorithm whose complexity is proportional
to the sum of the cardinalities of the attribute domains.

Specifically, to perturb record Ui = u, we can write
P (Vi; Ui = u)
= P (Vi1, . . . , ViM ; u)
= P (Vi1; u)·P (Vi2|Vi1; u) · · ·P (ViM |Vi1, . . . , Vi(M−1); u)
where Vij denotes the jth attribute of record Vi. For the
perturbation matrix A, this works out to

P (Vi1 = a; u) =
∑

{v|v(1)=a}
Avu

P (Vi2 = b|Vi1 = a; u) =
P (Vi2 = b, Vi1 = a; u)

P (Vi1 = a; u)

=

∑
{v|v(1)=a and v(2)=b} Avu

P (Vi1 = a; u)
. . . and so on

where v(i) denotes the value of the ith attribute for the
record with value v.

When A is chosen to be the gamma-diagonal matrix, and
nj is used to represent

∏j
k=1 | Sk

U |, we get the following
expressions for the above probabilities after some simple
algebraic manipulations:

P (Vi1 = b; Ui1 = b) = (γ +
nM

n1
− 1)x

P (Vi1 = b; Ui1 
= b) =
nM

n1
x (16)

and for the jth attribute

P (Vij = b|Vi1, . . . , Vi(j−1); Uij = b)

=


(γ+

nM
nj

−1)x
Qj−1

k=1 pk
if ∀k < j, Vik = Uik

(
nM
nj

)x
Qj−1

k=1 pk
o.w.

P (Vij = b|Vi1, . . . , Vi(j−1); Uij 
= b) =
(

nM
nj

)x
Qj−1

k=1 pk

(17)

where pk is the probability that Vik takes value a, given that
a is the outcome of the random process performed for the
kth attribute, i.e. pk = P (Vik = a|Vi1, . . . , Vi(k−1); Ui).

Note that the above perturbation takes M steps, one for
each attribute. For the first attribute, the probability distri-
bution of the perturbed value depends only on the original
value for the attribute and is given by Equation 16. For any
subsequent column j, to achieve the desired random per-
turbation, we use as input both its original value and the
perturbed values of the previous j − 1 columns, and gener-
ate the perturbed value as per the discrete distribution given
in Equation 17. This is an example of dependent column
perturbation, in contrast to the independent column pertur-
bations used in most of the prior techniques.

To assess the complexity, it is easy to see that the max-
imum number of iterations for generating the jth discrete
distribution is |Sj

U |, and hence the maximum number of it-
erations for generating a perturbed record is

∑
j |Sj

U |.

6. Application to Association Rule Mining

To illustrate the utility of the FRAPP framework, we
demonstrate in this section how it can be used for enhanc-
ing privacy-preserving mining of association rules, a popu-
lar mining model that identifies interesting correlations be-
tween database attributes [4].

The core computation of association rule mining is to
identify “frequent itemsets”, that is, all those itemsets
whose support (i.e. frequency) in the database is in excess
of a user-specified threshold supmin. Equation 8 can be di-
rectly used to estimate the support of itemsets containing
all M categorical attributes. However, in order to incor-
porate the reconstruction procedure into bottom-up associa-
tion rule mining algorithms such as Apriori [4], we need to
also be able to estimate the supports of itemsets consisting
of only a subset of attributes.

Let C denote the set of all attributes in the database,
and Cs be a subset of these attributes. Each of the at-
tributes j ∈ Cs can assume one of the |Sj

U | values. Thus,
the number of itemsets over attributes in Cs is given by
ICs =

∏
j∈Cs

|Sj
U |. Let L,H denote itemsets over this sub-

set of attributes. Given this, we can show (details in [6])
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that the matrix required to estimate supports of the subsets
is

AHL =

{
γx + ( IC

ICs
− 1)x if H = L

IC

ICs
x o.w.

(18)

i.e. the probability of an itemset remaining the same after

perturbation is
γ + IC/ICs − 1

IC/ICs

times the probability of it

being distorted to any other itemset.
Using the above ICs × ICs matrix, the supports of item-

sets over any subset Cs of attributes can be estimated. How-
ever, the inversion of the matrix could be potentially time-
consuming if ICs is large. Fortunately, as described in [6],
the following alternative equation can be derived and used
to efficiently compute the support of a given itemset H,
since it only involves the inversion of a 2-by-2 matrix,

A2×2 =

x

[
γ + ( IC

ICs
− 1) IC

ICs

(ICs − 1) IC

ICs
γ + ( IC

ICs
− 1) + (ICs − 2) IC

ICs

]
with [

supV
H

N − supV
H

]
= A2×2

[
supU

H
N − supU

H

]
where supU

H and supV
H denote the supports of itemset H

in the original and perturbed databases, respectively. The
above equation is derived using the fact that the sum of the
supports of all the ICs itemsets is constrained to be equal to
the total number of records in the database, i.e. N .

Hence, our scheme can be implemented efficiently on
bottom-up association rule mining algorithms such as Apri-
ori [4].

7. Performance Analysis

In this section, we quantitatively assess the utility of the
FRAPP framework with respect to the privacy and accuracy
levels that it can provide for mining frequent itemsets.

7.1. Datasets

The following real-world datasets were used in our ex-
periments:

CENSUS. This dataset contains census information for
approximately 50,000 adult American citizens, and is avail-
able from the UCI repository [18]. It includes fields
that users may prefer to keep private – for example, the
“race” and “sex” attributes. We used three continuous
(age, fnlwgt, hours-per-week) and three cat-
egorical (native-country, sex, race) attributes

from the census database in our experiments, with the con-
tinuous attributes partitioned into discrete intervals to con-
vert them into categorical attributes. The specific categories
used for these six attributes are listed in Table 1.

HEALTH. This dataset captures health information for
over 100,000 patients collected by the US government [17].
We selected 3 continuous and 4 categorical attributes from
the dataset for our experiments. The attributes and their cat-
egories are listed in Table 2.

In order to ensure that our results were applicable to large
disk-resident databases, the above datasets were scaled by
a factor of 50 in our experiments. We evaluated the asso-
ciation rule mining accuracy of our schemes on the above
datasets for a user-specified minimum support of supmin =
2%. Table 3 gives the number of frequent itemsets in the
datasets for this support threshold, as a function of the item-
set length.

7.2. Performance Metrics

We measure the performance of the system with regard
to the accuracy that can be provided for a given degree of
privacy specified by the user.

Privacy. The (ρ1, ρ2) strict privacy measure from [9] is
used as the privacy metric. While we experimented with a
variety of privacy settings, due to space limitations, results
are presented here for a sample (ρ1, ρ2) = (5%, 50%) re-
quirement, which was also used in [9]. This privacy setting
results in γ = 19.

Accuracy. We evaluate two kinds of mining errors, Sup-
port Error and Identity Error, in our experiments. The
Support Error (ρ) metric reflects the (percentage) average
relative error in the reconstructed support values for those
itemsets that are correctly identified to be frequent. De-
noting the number of frequent itemsets by |F |, the recon-
structed support by ŝup and the actual support by sup, the
support error is computed over all frequent itemsets as

ρ =
1

| F |Σf∈F

| ŝupf − supf |
supf

∗ 100

The Identity Error (σ) metric, on the other hand, reflects
the percentage error in identifying frequent itemsets and
has two components: σ+, indicating the percentage of false
positives, and σ− indicating the percentage of false neg-
atives. Denoting the reconstructed set of frequent itemsets
with R and the correct set of frequent itemsets with F , these
metrics are computed as

σ+ = |R−F |
|F | ∗ 100 σ− = |F−R|

|F | * 100
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Table 1. CENSUS Dataset

Attribute Categories
age [15 − 35), [35 − 55), [55 − 75),≥ 75

fnlwgt [0 − 1e5], [1e5 − 2e5), [1e5 − 3e5), [3e5 − 4e5),≥ 4e5

hours-per-week [0 − 20), [20 − 40), [40 − 60), [60 − 80),≥ 80

race White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black
sex Female, Male

native-country United-States, Other

Table 2. HEALTH Dataset

Attribute Categories
AGE (Age) [0 − 20), [20 − 40), [40 − 60), [60 − 80),≥ 80)

BDDAY12 (Bed days in past 12 months) [0 − 7), [7 − 15), [15 − 30), [30 − 60),≥ 60

DV12 (Doctor visits in past 12 months) [0 − 7), [7 − 15), [15 − 30), [30 − 60),≥ 60

PHONE (Has Telephone) Yes, phone number given; Yes, no phone number given; No
SEX (Sex) Male; Female

INCFAM20 (Family Income) Less than $20,000; $20,000 or more
HEALTH (Health status) Excellent; Very Good; Good; Fair; Poor

Table 3. Frequent Itemsets for supmin = 0.02
Itemset Length

1 2 3 4 5 6 7
CENSUS 19 102 203 165 64 10 –
HEALTH 23 123 292 361 250 86 12

7.3. Perturbation Mechanisms

We present the results for FRAPP and representative
prior techniques. For all the perturbation mechanisms, the
mining from the distorted database was done using Apri-
ori [4] algorithm, with an additional support reconstruction
phase at the end of each pass to recover the original supports
from the perturbed database supports computed during the
pass [7, 14].

Specifically, the perturbation mechanisms evaluated in
our study are the following:

DET-GD. This scheme uses the deterministic gamma-
diagonal perturbation matrix A (Section 3) for perturbation
and reconstruction. The implementation described in Sec-
tion 5 was used to carry out the perturbation, and the equa-
tions of Section 6 were used to construct the perturbation
matrix used in each pass of Apriori.

RAN-GD. This scheme uses the randomized gamma-
diagonal perturbation matrix Ã (Section 4) for perturbation
and reconstruction. Though, in principle, any distribution

can be used for Ã, here we evaluate the performance of uni-
formly distributed Ã (as given by Equation 13) over the en-
tire range of the α randomization parameter (0 to γx).

MASK. This is the perturbation scheme proposed in [14],
intended for boolean databases and characterized by a sin-
gle parameter 1− p, which determines the probability of an
attribute value being flipped. In our scenario, the categorical
attributes are mapped to boolean attributes by making each
value of the category an attribute. Thus, the M categorical
attributes map to Mb =

∑
j | Sj

U | boolean attributes.
The flipping probability 1 − p was chosen as the lowest

value which could satisfy the privacy constraints given by
Equation 2 (details of the procedure are given in [6]). For
γ = 19, this value turned out to be 0.439 and 0.448 for the
CENSUS and HEALTH datasets, respectively.

C&P. This is the Cut-and-Paste perturbation scheme pro-
posed in [10], with algorithmic parameters K and ρ. To
choose K , we varied K from 0 to M , and for each K , ρ
was chosen such that the matrix (Equation 11) satisfies the
privacy constraints (Equation 2). The results reported here
are for the (K, ρ) combination giving the best mining ac-
curacy, which for γ = 19, turned out to be K = 3 and
ρ = 0.494.

7.4. Experimental Results

For the CENSUS dataset, the support (ρ) and identity
(σ−, σ+) errors of the four perturbation mechanisms (DET-
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GD, RAN-GD, MASK, C&P) are shown in Figure 1, as a
function of the length of the frequent itemsets (the perfor-
mance of RAN-GD is shown for randomization parameter
α = γx/2). The corresponding graphs for the HEALTH
dataset are shown in Figure 2. Note that the support error
(ρ) graphs are plotted on a log-scale.

In these figures, we first note that the performance of the
DET-GD method is visibly better than that of MASK and
C&P. In fact, as the length of the frequent itemset increases,
the performance of both MASK and C&P degrade drasti-
cally. Specifically, MASK is not able to find any itemsets
of length above 4 for the CENSUS dataset, and above 5 for
the HEALTH dataset, while C&P could not identify item-
sets beyond length 3 in both datasets.

The second point to note is that the accuracy of RAN-
GD, although employing a randomized matrix, is only
marginally lower than that of DET-GD. In return, it pro-
vides a substantial increase in the privacy – its worst case
(determinable) privacy breach is only 33% as compared to
50% with DET-GD. Figure 3a shows the performance of
RAN-GD over the entire range of α with respect to the pos-
terior probability range [ρ−2 , ρ+

2 ]. The mining support re-
construction errors for itemsets of length 4 are shown in
Figures 3b and 3c for the CENSUS and HEALTH datasets,
respectively. We observe that the performance of RAN-GD
does not deviate much from the deterministic case over the
entire range, whereas very low determinable posterior prob-
ability is obtained for higher values of α.

The primary reason for DET-GD and RAN-GD’s good
performance are the low condition numbers of their pertur-
bation matrices. This is quantitatively shown in Figure 4,
which plots these condition numbers on a log-scale (the
condition numbers of DET-GD and RAN-GD are identical
in this graph because E(Ã) = A). Note that the condition
numbers are not only low but also independent of the fre-
quent itemset length.

In marked contrast, the condition numbers for MASK
and C&P increase exponentially with increasing itemset
length, resulting in drastic degradation in accuracy. Thus,
our choice of a gamma-diagonal matrix indicates highly
promising results for discovery of long patterns.

8. Related Work

The issue of maintaining privacy in data mining has at-
tracted considerable attention in the recent past. The work
closest to our approach is that of [2, 5, 8, 9, 10, 13, 14]. In
the pioneering work of [5], privacy-preserving data classi-
fiers based on adding noise to the record values were pro-
posed. This approach was extended in [2] and [13] to ad-
dress a variety of subtle privacy loopholes.

New randomization operators for maintaining data pri-
vacy for boolean data were presented and analyzed in [10,

14]. These methods are applicable to categorical/boolean
data and are based on probabilistic mapping from the do-
main space to the range space, rather than by incorporat-
ing additive noise to continuous valued data. A theoretical
formulation of privacy breaches for such methods, and a
methodology for limiting them, were given in the founda-
tional work of [9].

Techniques for probabilistic perturbation have also been
investigated in the statistics literature. For example, the
PRAM method [8, 12], intended for disclosure limitation
in microdata files, considers the use of Markovian perturba-
tion matrices. However, the ideal choice of matrix is left as
an open research issue, and an iterative refinement process
to produce acceptable matrices is proposed as an alternative.
They also discuss the possibility of developing perturbation
matrices such that data mining can be carried out directly
on the perturbed database (that is, as if it were the original
database and therefore not requiring any matrix inversion),
and still produce accurate results. While this is certainly an
attractive notion, the systematic identification of such matri-
ces and the conditions on their applicability is still an open
research issue.

Our work extends the above-mentioned methodologies
for privacy preserving mining in a variety of ways. First,
we combine the various approaches for random perturba-
tion on categorical data into a common theoretical frame-
work, and explore how well random perturbation methods
can perform in the face of strict privacy requirements. Sec-
ond, through quantification of privacy and accuracy mea-
sures, we present an ideal choice of perturbation matrix,
thereby taking the PRAM approach, in a sense, to its logi-
cal conclusion. Third, we propose the idea of randomizing
the perturbation matrix elements themselves, which has not
been, to the best of our knowledge, previously discussed in
the literature.

9. Conclusions and Future Work

In this paper, we developed FRAPP, a generalized model
for random-perturbation-based methods operating on cate-
gorical data under strict privacy constraints. We showed
that by making careful choices of the model parameters
and building perturbation methods for these choices, order-
of-magnitude improvements in accuracy could be achieved
as compared to the conventional approach of first deciding
on a method and thereby implicitly fixing the associated
model parameters. In particular, a “gamma-diagonal” per-
turbation matrix was identified as delivering the best accu-
racy among the class of symmetric positive definite matri-
ces. We presented an implementation technique for gamma-
diagonal-based perturbation, whose complexity is propor-
tional to the sum of the domain cardinalities of the attributes
in the database. Empirical evaluation of our new gamma-
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Figure 1. CENSUS: (a) Support error ρ (b) False negatives σ− (c) False positives σ+
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Figure 2. HEALTH: (a) Support error ρ (b) False negatives σ− (c) False positives σ+
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Figure 3. (a) Posterior probability ranges (b) Support error ρ for CENSUS (c) Support error ρ for HEALTH
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Figure 4. Perturbation Matrix Condition Numbers: (a) CENSUS (b) HEALTH

diagonal-based techniques on the CENSUS and HEALTH
datasets showed substantial reductions in frequent itemset
identity and support reconstruction errors.

We also investigated the novel strategy of having the per-
turbation matrix composed of not values, but random vari-
ables instead. Our analysis of this approach showed that,
at a marginal cost in accuracy, significant improvements in
privacy levels could be achieved.
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