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ABSTRACT
Protection of privacy has become an important problem in
data mining. In particular, individuals have become increas-
ingly unwilling to share their data, frequently resulting in
individuals either refusing to share their data or providing
incorrect data. In turn, such problems in data collection can
affect the success of data mining, which relies on sufficient
amounts of accurate data in order to produce meaningful re-
sults. Random perturbation and randomized response tech-
niques can provide some level of privacy in data collection,
but they have an associated cost in accuracy. Cryptographic
privacy-preserving data mining methods provide good pri-
vacy and accuracy properties. However, in order to be ef-
ficient, those solutions must be tailored to specific mining
tasks, thereby losing generality.

In this paper, we propose efficient cryptographic tech-
niques for online data collection in which data from a large
number of respondents is collected anonymously, without
the help of a trusted third party. That is, our solution allows
the miner to collect the original data from each respondent,
but in such a way that the miner cannot link a respondent’s
data to the respondent. An advantage of such a solution is
that, because it does not change the actual data, its success
does not depend on the underlying data mining problem.
We provide proofs of the correctness and privacy of our so-
lution, as well as experimental data that demonstrates its
efficiency. We also extend our solution to tolerate certain
kinds of malicious behavior of the participants.

1. INTRODUCTION
With the rapid development of computer and networking

technologies, huge amounts of data are collected and ana-
lyzed all over the world every day. Some of these data is
privacy-sensitive, and issues of privacy protection of sensi-
tive data are receiving more and more attention from the
public [22, 30, 31]. In particular, since data mining is a
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powerful tool for discovering knowledge from large amounts
of data, protection of privacy in data mining has become
one of the top priorities of study [8].

Currently, a significant amount of data used in data min-
ing is collected on networks. Consider a typical scenario of
online data collection: the miner (or data collector) queries
large sets of respondents (or customers), and each respon-
dent submits her data to the miner in response. Clearly,
this can be an efficient and convenient procedure, assuming
the respondents are willing to submit their data. However,
the respondents’ willingness to submit data is affected by
their privacy concerns [9]. For example, the miner may be
a medical researcher who studies the relationship between
dining habits and a certain disease. Since a respondent may
not want to reveal what food she eats and/or whether she
has that disease, she may give false information or simply
decline to provide information. Therefore, protecting pri-
vacy of respondents is of great importance to the success of
data mining.

In the example we mentioned above, one possible solu-
tion is that the miner collects data anonymously. That is,
he collects records from the respondents containing each re-
spondent’s dining habits and health information related to
that disease, but does not know which record came from
which respondent. Since a respondent is “hidden” among
many peers, she should feel comfortable to submit her data.

We generalize this idea to propose an approach called
anonymity-preserving data mining. Specifically, we propose
that the miner should collect data in such a way that he is
unable to link any piece of data collected to the respondent
who provided that piece of data. In this way, respondents
do not need to worry about their privacy. Furthermore,
the data collected is not modified in any way, and thus the
miner will have the freedom to apply any suitable mining
algorithms to the data.

1.1 Related Work
A variety of methods have been proposed to protect the

privacy of each respondent by perturbing the respondents’
data. Warner proposed randomized response techniques, to-
gether with statistical techniques for reconstructing distri-
butions from the perturbed responses [42]. Different ran-
dom perturbation methods have been proposed and applied
in different data mining algorithms [3, 2, 15, 33, 14, 12].
Random perturbation is very efficient, but in general it can
induce a tradeoff between privacy of respondents and ac-
curacy of the data mining result: the more privacy each
respondent has, the less accurate the result of mining is,
and vice versa. Although some perturbation techniques lead



to good accuracy plus good privacy in specific data mining
problems, these perturbation techniques would produce in-
accurate results when used in other data mining problems.
The privacy-preserving properties of the perturbation tech-
niques are further explored in [25].

Privacy-preserving data mining solutions have also been
proposed based on cryptographic techniques [27, 24, 40, 43,
1, 44, 45]. Using a cryptographic solution, it is possible
to achieve full privacy without losing accuracy [45]. How-
ever, the design of the cryptographic protocol depends on
the specific mining task, unless a prohibitively expensive
general-purpose secure multiparty computation is used [46,
18].

A class of closely related work studies how to measure
privacy in data mining. This includes privacy definitions
based on confidence intervals [3], based on mutual informa-
tion [2], and based on priori and posterior knowledge [14,
11]. Cryptography-based discussion of privacy in data min-
ing is given by Gilburd et al. [16] and Dwork and Nissim [13],
respectively.

Another class of closely related work is k-anonymization [38,
37, 36, 35, 10, 28, 5, 41, 4, 47], which processes a database
table to de-associate privacy-sensitive attributes from the
corresponding identifiers. Although both k-anonymization
and our work study “anonymity”, the meanings of anonymity
have a subtle difference: in k-anonymization, making the
data anonymous is the target; while in our work, assuming
the data is inherently anonymous (just as in our example
of dining habits and a disease), making the data submission
procedure anonymous is the only concern (see Section 2 for
the precise definition of the type of anonymity we consider).

We note that our problem could be solved if an anonymous
communication channel were available. However, building
an anonymous channel is a nontrivial task. Possible ways to
build anonymous channels include mix networks [6, 29, 34,
23, 21], dining cryptographer networks [7, 20], and multicast-
based methods [26], all of which are still under active study.
Systems like Crowds [32] provide anonymity for web access
without assuming an existing anonymous channel. Similarly,
our work provides anonymity for data collection without as-
suming an existing anonymous channel.

1.2 Our Contributions
Our contributions can be summarized as follows:

• We propose an approach called anonymity-preserving
data mining. Instead of making each respondent’s data
oblivious to the miner, our approach reveals all respon-
dents’ data to the miner, but does not allow the miner
to link any respondent’s data to the corresponding re-
spondent. As long as the data itself does not contain
information that can be used for identification, this
is usually sufficient to protect respondents’ privacy.
A strong advantage of this approach is its generality:
since the data collected is not encrypted or perturbed,
the miner can then use the data freely for a variety of
data mining algorithms.

• We present a concrete protocol for anonymity-preserving
data collection under the assumption that all partic-
ipants follow the protocol. Proofs are given for its
correctness and anonymity property.

• We extend our solutions to provide anonymity protec-

tion even if the miner or the miner plus some respon-
dents are acting maliciously.

• We provide experimental results to measure the prac-
tical efficiency of our solutions.

1.3 Paper Organization
We start in Section 2 by providing a formal definition of

anonymity. In Section 3, we give a basic solution in the
model that the miner and all respondents follow the proto-
col. We also prove the correctness and anonymity properties
of the protocol and present experimental results of the ef-
ficiency. In Section 4, we describe an extended protocol to
protect respondents privacy against a malicious data miner,
again with experimental results of efficiency. In Section 5,
we provide another extended protocol that works against a
malicious miner plus some malicious respondents. We con-
clude in Section 6.

2. TECHNICAL PRELIMINARIES
In this section, we give a specification of our data collec-

tion problem as well as a formal definition of our anonymity
requirements.

2.1 The Data Collection Problem
We consider a scenario of data collection in which there

is a data miner and a (potentially large) number of respon-
dents. Each respondent owns a piece of data and the miner
intends to mine the data so that he can find useful patterns.
In our setting, the goal is to allow the miner to collect the
data without being able to determine which piece of data
came from whom. Specifically, let N be a small constant
number, typically 20, 50, or 100. We divide the respondents
into groups, where each group has N members. The miner
collects the data from one group at a time.1 Our require-
ment is that each respondent should be “hidden” in the N
respondents in her group. In other words, the miner should
get N pieces of data from a group but should not know
which piece came from which group member.

In the sequel, we restrict our discussion to one group of
respondents and denote the N respondents in this group by
1, . . . , N . We assume that there is a private and authenti-
cated communication channel between each respondent and
the miner. (Note that such communication channels can be
implemented using standard protocols like SSL and IPSec;
see Figure 1 for the overall architecture. We do not go into
details of the implementation of channels since it is out of
the scope of this paper.) Although communication channels
between respondents may exist in some practical situations,
to make the problem as general as possible, we do not as-
sume their existence in our problem.

We denote by di the piece of data owned by respondent i,
whose length is bounded by a security parameter κ. There
are two possible ways for the miner to violate respondent
i’s anonymity: either di contains some information about
respondent i (like respondent i’s identifier, telephone num-
ber, or zip code) and by looking at this information the
miner is able to associate di with respondent i, or during
the data collection process the miner observes that di comes

1Note that this assumption is very realistic because un-
der this assumption running a data collection protocol only
needs N respondents be simultaneously online.



from respondent i. As noted before, in this paper we fo-
cus the second possibility. In particular, we assume that di

does not contain information that can be used to associate
it with respondent i; in this case, respondent i will remain
anonymous as long as the data collection process preserves
her anonymity.

Data Mining Tools
Anonymity-Preserving Data Collection

Private and Authenticated Communication Channel
Database and Operating System

Figure 1: System Components

In this paper, we take into account that some of the re-
spondents may be corrupted and colluding with the miner.
Informally, the data collection process preserves each hon-
est respondent’s anonymity if, when we arbitrarily switch
the data between honest respondents, the miner (with the
help of dishonest respondents) cannot see any difference in
the data collection process. Mathematically, let σ be an ar-
bitrary permutation on {1, . . . , N}; then (dσ(1), . . . , dσ(N)) is
the result of arbitrarily switching data between respondents.
We further require that σ(i) = i for any corrupted respon-
dent i, which means only the honest respondents’ data are
switched. The anonymity requirement is that the miner can-
not distinguish the data collection procedure in which the
respondents have data (d1, . . . , dN ) from the data collection
procedure in which respondents have data (dσ(1), . . . , dσ(N)).

2.2 Formal Definition of Anonymity
Now we give our formal definition of anonymity in a stan-

dard cryptographic model, the semi-honest model [17]. In
the semi-honest model, the miner and the corrupted respon-
dents follow the protocol but attempt to derive private infor-
mation and violate the anonymity of the honest respondents.

Definition 1. A protocol for the data collection problem
preserves each honest respondent’s anonymity against the
miner and t − 1 corrupted respondents in the semi-honest
model if, for any I ⊆ {1, . . . , n} such that |I| = t − 1, for
any (d1, . . . , dN ) and any permutation σ on {1, . . . , N} such
that ∀i ∈ I, σ(i) = i,

{viewminer,I(d1, . . . , dN )}
c≡ {viewminer,I(dσ(1), . . . , dσ(N))}.

In the above,
c≡ denotes computational indistinguishability

and {viewminer,I(d1, . . . , dN )} is the joint view of the miner
and the set I of t−1 corrupted respondents. (See a standard
book of cryptography, e.g., [17] for the formal definitions of
these concepts.) Intuitively, Definition 1 states the adver-
sary (i.e., the miner and the corrupted respondents) can-
not notice any difference in his view if we arbitrarily switch
data between the honest respondents. Therefore, the miner
and the corrupted respondents jointly learn nothing about
which piece of data corresponds to which honest respondent.
Clearly, this is consistent with the intuitive understanding
of anonymity.

In this paper, we not only develop a solution in the semi-
honest model, but also extend the solution to another stan-
dard cryptographic model, the malicious model [17]. Since

defining anonymity in the malicious model is significantly
more complicated and requires many details out of the scope
of this paper, we do not formalize a definition of anonymity
in the malicious model. Instead, we give an informal ex-
planation of anonymity in this model: first, an anonymity-
preserving protocol in the malicious model needs to be ano-
nymity-preserving when all participants follow the protocol;
second, when any malicious participant deviates from the
protocol, the honest participants must be able to detect this
before the anonymity is violated, so that the honest partici-
pants can abort the protocol without their anonymity being
compromised. In this way, the malicious participants are
effectively “forced” to follow the protocol.

3. THE BASIC SOLUTION
In this section, we give a solution to the problem of anony-

mity-preserving data collection in the semi-honest model.
Extensions of this solution to the malicious model are pre-
sented in Sections 4 and 5.

3.1 Overview of the solution
The target of our solution is that the miner should get a

random permutation of the respondents’ data (d1, . . . , dN ),
without knowing which piece of data comes from which re-
spondent. To achieve this goal, we use ElGamal encryp-
tion (further described below) together with a rerandom-
ization technique and a joint decryption technique. Both
of these techniques have been used extensively in mix net-
works, e.g., [29, 34, 23, 21].

Let G (|G| = q, where q is a large prime) be a cyclic
group in which the discrete logarithm is hard2, and let g be
a generator of G. The ElGamal encryption scheme uses a
key pair (x, y) such that y = gx mod q, where x is a private
key and y is a public key3. In this scheme, to encrypt a
message M using the public key y, one computes

C = (Myr, gr),

where the exponentiations are done modulo q and r is chosen
uniformly at random from [0, q−1]. (Throughout the paper,
all exponentiations are modulo q.) To decrypt the ciphertext
C using the private key x, one computes

M = C(1)/(C(2))x,

where C(1) and C(2) denote the first and the second com-
ponents of C, respectively. It has been shown in [39] that
(under standard complexity-theoretic assumptions,) the El-
Gamal encryption scheme is secure in the sense of semantic
security. (See [19] for the definition of semantic security).

In the ElGamal encryption scheme, one cleartext has many
possible encryptions, since the random number r can take
many different values. ElGamal supports rerandomization,
which means computing a different encryption of M from a
given encryption of M. A related operation is permutation
of the order of items, which means randomly switching the
order of items. If we rerandomize and permute a sequence
of ciphertexts, then we get another sequence of ciphertexts

2The discrete logarithm problem is a standard computa-
tional problem used in cryptography. Many cryptographic
tools are based on the hardness of discrete logarithm.
3Throughout this paper, by “key” we mean a cryptographic
key rather than a database key.



having the same multiset of cleartexts but in a different or-
der. Looking at these two sequences of ciphertexts, the ad-
versary cannot determine any information about which new
ciphertext corresponds to which old ciphertext.

In our solution, t of the N respondents act as “leaders”.
Leaders have the special duty of anonymizing the data. At
the beginning of the protocol, all respondents encrypt their
data using a public key which is the product of all leaders’
public keys. Note that the private key corresponding to
this public key is the sum of all leaders’ private keys; thus,
without the help of all leaders, nobody could decrypt any
of these encryptions. Then the leaders rerandomize these
encryptions and permute them. Finally, the leaders jointly
help the miner to decrypt the new encryptions, which are in
an order independent from the original encryptions.

For notational convenience, we assume in the sequel that
the leaders are respondents 1 through t. In practice, the
choice of leaders can be arbitrary or dependent on the ap-
plication.

3.2 Respondent Keys
Each respondent i has a key pair (xi, yi) (xi ∈ [0, q − 1],

yi ∈ G) such that yi = gxi . Here the public key yi is known
to all participants, while the private key xi is kept secret by
respondent i. In the sequel, let

y =

t∏
i=1

yi,

and

x =

t∑
i=1

xi.

In our protocol, we use this public value y as a public key
to encrypt respondent data. Clearly, y = gx. So, decrypting
these encryptions of respondent data needs this secret value
x, which is not known to any individual respondent.

3.3 Protocol

• Phase 1: Data submission.

– For i = 1, . . . , N , each respondent i encrypts her
data using public key y:

Ci
def
= (C

(1)
i , C

(2)
i ) = (yridi, g

ri),

where ri is picked uniformly at random from [0, q−
1]. Then respondent i sends Ci to the miner.

• Phase 2: t-round anonymization. For i = 1, . . . , t, the
miner and the respondents work as follows.

– At the beginning of the ith round, the miner sends
(C1, . . . , CN ) to leader i.

– Leader i rerandomizes each piece of data and per-
mutes the pieces: for j = 1, . . . , N ,

Rj
def
= (R

(1)
j , R

(2)
j )

= (C
(1)

πi(j)
· yδπi(j) , C

(2)

πi(j)
· gδπi(j)),

where πi is a random permutation on {1, . . . , N},
and each δj is picked independently and uniformly
from [0, q − 1].

– For j = 1, . . . , N , leader i sets Cj = Rj . Then
leader i sends (C1, . . . , CN ) back to the miner.

• Phase 3: Decryption.

– The miner sends (C
(2)
1 , . . . , C

(2)
N ) to all leaders.

– Each leader i computes partial decryptions: for
j = 1, . . . , N ,

pj,i = (C
(2)
j )xi .

– Each leader i sends the miner the partial decryp-
tions (p1,i, . . . , pN,i).

– The miner computes the decryptions: for j =
1, . . . , N ,

d′j = C
(1)
j /

t∏
i=1

pj,i.

3.4 Correctness

Theorem 2. If all participants follow the protocol, then
the miner’s results are a permutation of (d1, . . . , dN ).

Proof. At the end of Phase 1, the miner has received
encryptions of (d1, . . . , dN ). In Phase 2, these ciphertexts
are rerandomized and permuted; therefore, at the end of
Phase 2, (C1, . . . , CN ) is the encryptions of a permutation
of (d1, . . . , dN ). Since

d′j = C
(1)
j /

t∏
i=1

pj,i

= C
(1)
j /

t∏
i=1

(C
(2)
j )xi

= C
(1)
j /(C

(2)
j )

∑t
i=1 xi

= C
(1)
j /(C

(2)
j )x,

the cleartexts of (C1, . . . , CN ) are (d′1, . . . , d
′
N ). Therefore,

(d′1, . . . , d
′
N ) is a permutation of (d1, . . . , dN ).

3.5 Anonymity

Theorem 3. The above presented protocol preserves the
anonymity of each honest respondent against the miner and
t− 1 corrupted respondents in the semi-honest model.

Proof. By contradiction. Assume that this protocol does
not preserve the anonymity. Based on this protocol, we give
a probabilistic polynomial-time algorithm that distinguishes
the ElGamal encryptions of two different cleartexts, which
contradicts the well-known result that ElGamal is semanti-
cally secure.

Clearly it suffices to consider the case in which all the
t − 1 corrupted customers are leaders. The above assump-
tion of not preserving anonymity means that there exist
(d1, . . . , dN ), a permutation σ on {1, . . . , N} such that ∀i ∈
I, σ(i) = i, a probabilistic polynomial algorithm D, and a
polynomial f() such that for infinitely many κ,

Pr[D(viewminer,I(d1, . . . , dN )) = 1]

− Pr[D(viewminer,I(dσ(1), . . . , dσ(N))) = 1]

>1/f(κ). (3.1)



Now we use a hybrid argument (see [17]): since σ is a per-
mutation on {1, . . . , N} such that ∀i ∈ I, σ(i) = i, we can
decompose it to a number of simple permutations where
each simple permutation only switches the order of two ele-
ments outside I (that are not equal). Formally, there exist
permutations σ1, . . . , σm (m < N − (t − 1)) on {1, . . . , N}
such that for j = 1, . . . , m, ∀i ∈ I, σj(i) = i and that

σ = σ1 . . . σm.

Define

view0 = viewminer,I(d1, . . . , dN ),

and for j = 1, . . . , m,

viewj = viewminer,I(dσ1...σj(1), . . . , dσ1...σj(N)).

Then clearly,

viewm = viewminer,I(dσ(1), . . . , dσ(N)).

By Equation 3.1, we know there exists j ∈ [0, m] such that

Pr[D(viewj) = 1]− Pr[D(viewj+1) = 1] >
1

mf(κ)
.

The above equation is equivalent to

Pr[D(viewminer,I(dσ1...σj(1), . . . , dσ1...σj(N))) = 1]

− Pr[D(viewminer,I(dσ1...σjσj+1(1), . . . ,

dσ1...σjσj+1(N))) = 1]

>
1

mf(κ)
. (3.2)

Note a subtle convention of compositions:

σ1 . . . σjσj+1(i) = σj+1(σ1 . . . σj(i)).

(If we do not use this convention, we can get the same result
by a simple modification of the indices.) Therefore, we can
rewrite Equation 3.2 as

Pr[D(viewminer,I(d`1 , . . . , d`N )) = 1]

− Pr[D(viewminer,I(dσj+1(`1), . . . , dσj+1(`N ))) = 1]

>
1

mf(κ)
, (3.3)

where `i = σ1 . . . σj(i). Recall that σj+1 only switches the
order of two elements outside I that are not equal; suppose
that it switches the order of `α and `β (d`α 6= d`β , α < β,
α, β 6∈ I). Formally, we have

dσj+1(`α) = d`β ,

dσj+1(`β) = d`α ,

and that for any i 6= α, i 6= β,

dσj+1(`i) = d`i .

Below we give a probabilistic polynomial-time algorithm A
that distinguishes an ElGamal encryption of d`α from an
ElGamal encryption of d`β .

On input ciphertext e, A first computes, using the homo-
morphic property of ElGamal, another ciphertext e′ such
that the product of the cleartexts of e and e′ is equal to
d`α · d`β . Then A rerandomizes e′ to get e′′. Next, A sim-
ulates two executions of our protocol and applies D to the
view of the adversary generated in each simulated execution:

during each simulated execution, A simulates the miner us-
ing a process that works exactly as described in the protocol.

In Phase 1 of the protocol, for any i except α and β,
A simulates customer i using a process with input d`i ; the
process works exactly as described in the protocol. A simu-
lates customers α and β with two processes with ciphertext
inputs; these two processes do not encrypt their inputs as
described in the protocol but directly send out their inputs
to the simulated miner. (Note that this has no impact on
the view of the adversary because α, β 6∈ I; and so it has
no impact on the output of D which we need.) During the
first simulated execution, the simulated customer α starts
with ciphertext e and the simulated customer β starts with
e′′; during the second execution, the simulated customer
α starts with ciphertext e′′ and the simulated customer β
starts with e. Now recall that t − 1 leaders are dishonest;
suppose that the only honest leader is θ.

In Phase 2, the first θ − 1 rounds of anonymization are
simulated exactly as described in the protocol. For i =
θ, . . . , t, A chooses a random permutation ρi on [1, . . . , N ]
and simulates the ciphertexts (C1, . . . , CN ) at the end of
round i using random encryptions of (dρi(`1), . . . , dρi(`N )).
The corresponding simulated messages and coin flips can be
easily computed from these simulated ciphertexts.

In Phase 3, the simulated messages and coin flips can be
easily computed from the simulated ciphertexts (C1, . . . , CN )
at the end of round t in Phase 2 together with their decryp-
tions (dρt(`1), . . . , dρt(`N )).

Applying D to the views of the adversary generated in the
simulated executions, A can compute

o1 =D(viewminer,I(d`1 , . . . , d`α−1 , D(e), d`α+1 , . . . ,

d`β−1 , D(e′′), d`β+1 , . . . , d`N )),

and

o2 =D(viewminer,I(d`1 , . . . , d`α−1 , D(e′′), d`α+1 , . . . ,

d`β−1 , D(e), d`β+1 , . . . , d`N )),

where D(e) denotes the decryption of e. If o1 = 1 and
o2 = 0, A outputs 1; if o1 = 0 and o2 = 1, A outputs 0;
otherwise A outputs a uniformly random bit.

Now we analyze the probabilities of outputing 1 with in-
put ciphertext of d`α or d`β . For convenience, let

p1 = Pr[D(viewminer,I(d`1 , . . . , d`N )) = 1],

and

p2 = Pr[D(viewminer,I(dσj+1(`1), . . . , dσj+1(`N ))) = 1].

When the input ciphertext is an encryption of d`α , the prob-
ability that we have output equals 1 is

Pr[A(d`α) = 1] = p1(1− p2) + p1p2/2 + (1− p1)(1− p2)/2.

When the input ciphertext is an encryption of d`β , the prob-
ability that we have output equals 1 is

Pr[A(d`β ) = 1] = p2(1− p1) + p2p1/2 + (1− p2)(1− p1)/2.



Combining the above two equations, we have

Pr[A(d`α) = 1]− Pr[A(d`β ) = 1]

= p1(1− p2) + p1p2/2 + (1− p1)(1− p2)/2

−(p2(1− p1) + p2p1/2 + (1− p2)(1− p1)/2)

= p1 − p2

>
1

mf(κ)
.

The last inequality is due to Equation 3.3. However, this
contradicts the semantic security of ElGamal.
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Figure 2: Regular respondent’s computation time
with semi-honest participants
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Figure 3: Leader’s computation time with semi-
honest participants

3.6 Efficiency Analysis and Measurements
In our protocol, the computational overhead of a non-

leader respondent is only 2 modular exponentiations. The
major computational overhead of a leader is 3N +2 modular
exponentiations. The major computational overhead of the
miner is Nt modular multiplications and N modular divi-
sions. The overall communications are at most (6t + 2)κN
bits.
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Figure 4: Miner’s computation time with semi-
honest participants

To measure the efficiency of our protocol in practice, we
implemented it using the OpenSSL libraries4 and measured
the computational overheads. Since the time spent on com-
munications highly depends on the network bandwidth, we
did not measure the communication overhead in our exper-
iments. In our experiments, the length of cryptographic
keys is 1024 bits, which is sufficient for security in most ap-
plications. The environment used is the NetBSD operating
system running on an AMD Athlon 2GHz processor with
512M memory.

We measure the computation times of the three types of
participants: regular (i.e., non-leader) respondents, leaders,
and the miner. For each of these times, we measure how it
varies with different N and t. All our experimental results
are consistent with our theoretical analysis.

Figure 2 illustrates our measurements of a regular respon-
dent’s computation time: it is always about 15ms no matter
how N and t change.

Figure 3 illustrates our measurements of a leader’s com-
putation time: it is linear in N and does not depend on t.
For a typical scenario where N = 20, the computation time
of a leader is about 0.47 second.

Figure 4 illustrates our measurements of the miner’s com-
putation time: it is linear both in N and in t. For a typical
scenario where N = 20 and t = 3, the computation time of
the miner is about 40ms.

4. MALICIOUS MINER
In this section, we extend our solution to a model in which

the miner is malicious but the corrupted respondents still
remain semi-honest. In Section 5, we study the case in which
the corrupted respondents also become malicious.

Recall that a malicious participant can deviate from the
protocol arbitrarily. It is more difficult to preserve anonymity
when the miner becomes malicious. For example, the miner
may choose two respondents i and j and replace the encryp-
tion of dj with the encryption of di. When the protocol
finishes, there will be a piece of data that has two copies.
The miner can then easily link this piece of data to respon-
dent i. To force the miner to follow the protocol, we use a
well-known cryptographic tool, digital signatures, as we now

4Available at http://www.openssl.org.



describe.

4.1 Digital Signatures
A digital signature scheme allows each participant to gen-

erate a signature on her message using her private key. Ev-
erybody can verify this signature using her public key but it
is infeasible for any other party to forge a signature of hers.
Formally, we denote by Sx(M) a signature on message M
using private key x. We denote by Vy(M, s) the verification
function of digital signature using public key y. Thus, for
any key pair (x, y) and any message M we have

Vy(M, Sx(M)) = accept.

Furthermore, without knowing x it is infeasible to forge a
digital signature s such that Vy(M, s) = accept.

Note that in our solution in the semi-honest model, each
message sent from the miner to any respondent originally
came from a respondent—the miner only forwards the mes-
sage. Therefore, if the original sender of the message signs it
and the receiver of the message verifies the signature, then
a cheating miner who deviates from the protocol can be de-
tected.

4.2 Protocol with malicious miner
This protocol assumes that each respondent i has another

key pair (x′i, y
′
i) such that y′i = gx′i (where x′i is a private key

and y′i is a public key), in addition to the key pair (xi, yi)
described in Section 3.2. This new key pair is used for digital
signatures.

• Phase 1: Data submission.

– For i = 1, . . . , N , each respondent i encrypts her
data using public key y:

Ci
def
= (C

(1)
i , C

(2)
i ) = (yridi, g

ri),

where ri is picked uniformly at random from [0, q−
1]. Respondent i signs Ci using private key x′i:

si = Sx′i(Ci).

Then respondent i sends (Ci, si) to the miner.

• Phase 2: t-round anonymization. For i = 1, . . . , t, the
miner and the respondents work as follows.

– At the beginning of the ith round, the miner sends
((C1, s1) . . . , (CN , sN )) to leader i.

– Leader i checks that she has received N signed
messages; if not, she aborts the protocol. Then
leader i verifies the signatures: if i = 1, for j =
1, . . . , N , she verifies that

Vy′j (Cj , sj) = accept;

otherwise, for j = 1, . . . , N , she verifies that

Vy′i−1
(Cj , sj) = accept;

If any of the above equations does not hold, leader
i aborts the protocol.

– Leader i rerandomizes each piece of data and per-
mutes the pieces: for j = 1, . . . , N ,

Rj
def
= (R

(1)
j , R

(2)
j )

= (C
(1)

πi(j)
· yδπi(j) , C

(2)

πi(j)
· gδπi(j)),

where πi is a random permutation on {1, . . . , N},
and each δj is picked independently and uniformly
from [0, q − 1].

– For j = 1, . . . , N , leader i sets Cj = Rj and signs
Cj using private key x′i:

sj = Sx′i(Cj).

Then leader i sends ((C1, s1), . . . , (CN , sN )) back
to the miner.

• Phase 3: Decryption.

– The miner sends ((C1, s1), . . . , (CN , sN )) to all
leaders.

– Each leader checks that she has received N signed
messages; if not, she aborts the protocol. Then
she verifies the signatures: for j = 1, . . . , N , she
verifies that

Vy′t(Cj , sj) = accept.

If any of the above equations does not hold, the
leader aborts the protocol.

– Each leader i computes partial decryptions: for
j = 1, . . . , N ,

pj,i = (C
(2)
j )xi .

– Each leader i sends the miner the partial decryp-
tions (p1,i, . . . , pN,i).

– The miner computes the decryptions: for j =
1, . . . , N ,

d′j = C
(1)
j /

t∏
i=1

pj,i.

4.3 Correctness and Anonymity
The only difference between this protocol and the protocol

in the semi-honest model is that messages are signed and
signatures are verified in this protocol. Consequently, when
all parties follow the protocol, the miner finally obtains a
permutation of (d1, . . . , dN ).

This protocol preserves the anonymity of each honest re-
spondent against a malicious miner, because if he drops or
tampers with any message to any respondent, the respon-
dent will detect it (by checking the number of messages and
verifying the signatures).

4.4 Efficiency Analysis and Measurements
In this protocol, the computational overhead of a non-

leader respondent is only 2 modular exponentiations and 1
signing operation. The major computational overhead of a
leader is 3N + 2 modular exponentiations, N + 1 signing
operations and 2N + 1 verification operations. The major
computational overhead of the miner is Nt modular multi-
plications and N modular division. The overall communica-
tions are at most (6t + 2)κN + (4t + 1)κ′N bits, where κ′ is
the length of a digital signature, typically 512 or 1024 bits.

We also implement this protocol and measure the com-
putation times in the environment described in Section 3.6.
The digital signature scheme we use is DSA and the length
of each signature is 512 bits.

Figure 5 illustrates our measurements of a regular respon-
dent’s computation time: it is always about 16ms regardless



of the values of N and t. Compared with 15ms for the proto-
col in the semi-honest model, the increase in computational
overhead is minimal.
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Figure 5: Regular respondent’s computation time
with malicious miner

Figure 6 illustrates our measurements of a leader’s com-
putation time: it is linear in N and does not depend on
t. For a typical scenario where N = 20, the computation
time of a leader is about 0.52s, which has a 10% increase
over the corresponding overhead of the protocol in the semi-
honest model. Figure 7 illustrates our measurements of the
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Figure 6: Leader’s computation time with malicious
miner

miner’s computation time: it is linear both in N and in t.
For a typical scenario where N = 20 and t = 3, the compu-
tation time of the miner is about 30ms. For the miner, this
protocol against a malicious miner adds no additional com-
putational overhead than the protocol against a semi-honest
miner.

5. MALICIOUS MINER AND RESPONDENTS
In this section, we consider the case in which some cor-

rupted respondents can also deviate from the protocol. Us-
ing the cryptographic tool of zero-knowledge proofs, we fur-
ther extend our solution to work against t − 1 malicious
correspondents in addition to the malicious miner. Before
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Figure 7: Miner computation time with malicious
miner

presenting the protocol, we first introduce several types of
zero-knowledge proofs it uses.

5.1 Zero-knowledge Proofs
Zero-knowledge proofs (ZKPs) are a standard cryptographic

tool by which a participant can convince other participants
of various statements without leaking any secret informa-
tion. In this paper, we use three types of ZKPs, all of which
can be carried out noninteractively (i.e., with only a single
message flow):

• PoK(C), where C is an ElGamal ciphertext. A partici-
pant can use this to prove that she knows the cleartext
of C.

• PoR((C1, . . . , CN ), (C′1, . . . , C
′
N )), where each Ci and

each C′i are ElGamal ciphertexts. A participant can
use this to prove that (C′1, . . . , C

′
N ) is a permuted reran-

domization of (C1, . . . , CN ), i.e., that (C′1, . . . , C
′
N ) has

the same multiset of cleartext messages as (C1, . . . , CN ).

• PoD(p, C(2), y), where C(2) is the second component
of an ElGamal ciphertext and y is a public key. A
participant can use this to prove that p is a partial
decryption computed by raising C(2) to the private
key corresponding to the public key y. Formally, this
means

p = (C(2))x,

where x = log y.

Methods to carry out these proofs can be found in, e.g., [21].

5.2 Protocol
This protocol extends the protocol in the semi-honest

model by adding a number of ZKPs.
In the data submission phase, each respondent i computes

a proof, zi = PoK(Ci), proving she knows the cleartext of
Ci. Along with Ci, respondent i sends zi to the miner.
The miner forwards (Ci, zi) to all other respondents. Each
respondent verifies the proofs sent by the other N − 1 re-
spondents. If any proof is missing or invalid, the respondent
aborts the protocol.



In the t-round anonymization phase, during round i, leader
i generates a proof

wi = PoR((C1, . . . , CN ), (R1, . . . , RN )),

which means the new ciphertexts (R1, · · · , RN ) are a permu-
tated rerandomization of the old ciphertexts (C1, · · · , CN ).
When leader i sends the new ciphertexts to the miner, she
also sends wi. The miner forwards them to all other re-
spondents, who verify the proof. If the proof is missing or
invalid, then the respondents abort the protocol.

In the decryption phase, each leader i computes a proof

vi = PoD(pj,i, C
(2)
j , yi),

which means pj,i is a partial decryption computed by rais-

ing C
(2)
j to the private key corresponding to the public key

yi. Each leader i sends the proof vi along with the partial
decryption to the miner, and the miner then forward vi with
partial decryptions to all other respondents. Each respon-
dent verifies the proofs. If any proof is missing or invalid,
the protocol is aborted.

In summary, we use ZKPs to force the miner and the
malicious respondents to follow the protocol. If they do not
follow the protocol, their malicious behavior will be detected
and the protocol will be aborted.

6. CONCLUSION
In this paper, we propose anonymity-preserving data col-

lection, a new approach to protect privacy in data mining.
This approach allows a data miner to collect data from a po-
tentially large number of respondents but prevents the miner
from finding out which respondent has submitted which
piece of data. We present three protocols with provable
anonymity guarantees, one in the semi-honest model, one
that can tolerate a malicious miner, and one that can tol-
erate some malicious respondents in addition to a malicious
miner. As confirmed by our experiments, the protocols are
very efficient.

Our current implementation of the protocols focuses on
efficiency measurements, but does not address user inter-
face or architectural issues. In practice, we suggest that the
respondent side be implemented as a browser plug-in or a
plug-in feature of a web service. An improved version of
implementation in which these issues are take into account
will be part of our next step of research.
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