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Abstract

At present, there is a lack of a sound methodology to infer causal gene expression relationships
on a genome wide basis. We address this first by examining the behaviour of some of the latest
and fastest algorithms for tree and cluster analysis, particularly hierarchical methods popular in
phylogenetics. Combined with these are two novel distances based on partial, rather than full,
correlations. Theoretically, partial correlations should provide better evidence for regulatory genetic
links than standard correlations. To compare the clusters obtained by many alternative methods we
use tree consensus methods. To compare methods of analysis we used tree partition metrics followed
by another level of clustering. These, and a tree fit metric, all suggest that the new distances give
quite different trees than those usually obtained. In the second part we consider graphical modeling
of the interactions of important genes of the cell cycle. Despite the models seeming to fit well on
occasions, and despite the experimental error structure seeming close to multivariate normal, there
are considerable problems to overcome. Latent variables, in this case important genes missing from
the analysis, are inferred to have a strong effect on the partial correlations. Also, the data show
clear evidence of sampling distributions conditional on the status of important cancer related genes,
including TP53. Without full information on which genes are wild type the appropriate models
cannot be fitted. These findings point to the need to include and distinguish not only all relevant
genes but also all splice variants in the design phase of a microarray analysis. Failure to do so will
induce problems similar to both latent variables and conditional distributions.
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1 Introduction

Microarray data monitors the expression level of a wide assortment of genes simultaneously. As a
consequence, the amount of data generated is very large in comparison to other similar techniques
used in molecular biology (e.g. Northern blots). Given such a fountain of data, ideally we would like
analysis techniques that would infer direct causal relationships between genes. At present, the most
widely used analyses are based on a correlation-derived distance and an ultrametric clustering method
such as UPGMA [4].

One question that has yet to be explored in detail is how do UPGMA trees compare with trees
derived by other methods? In particular, due to recent algorithmic improvements, least squares based
methods of tree inference have been increased in speed by a factor of N or more [2]. With 1,000 genes
this improves speed by ∼ 1,000 times, and makes such criteria based methods feasible for thousands of
genes. Unlike UPGMA, these methods do not need to assume that expression derived distance data are
ultrametric, and indeed there is no good reason to expect the distances between genes are ultrametric.
Methods that assume ultrametric data often lead to errors when the data are not ultrametric [19].
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To look for causal links between genes a crucial concept is that of partial correlation. That is,
measuring the correlation between genes i and j after the common effects of genes k, l, . . ., or all other
genes in the genome, are removed. Like correlations, partial correlations range from −1 to 1. Partial
correlations that remain significantly different from zero may be taken as indicators of a possible causal
link. It would be interesting then to cluster genes based on their partial correlations with each other,
rather than just their correlations. On trees that do not assume ultrametric distances, genes that are
connected by a short path through the tree should be good candidates for further study of more direct
interactions.

The area of graphical modeling has made considerable advances over the past two decades. If there
are a small to moderate number of variables (genes), and assuming errors follow a member of the
exponential multi-variate family, detailed predictions can be made from the models. For example, the
likelihood of the data under the model can be calculated [3,9,20]. Theoretically, graphical models seem
like a good possibility for elucidating genetic pathways from microarray data. The near multivariate
normal nature of experimental errors in log transformed gene expression ratios is one such encouraging
factor. Another useful feature of graphical models is that they can use directly the continuous data
reported by microarray experiments, something Bayesian Networks [7] have yet to do.

As a first step, it is interesting to apply analysis methods based on partial correlations to the
latest expression data coming from Stanford, NCI, etc. Due to strong interest from fellow researchers,
analyses are concentrated on a set of 50 preselected cancer related genes from the data of Ross et al.
and Scherf et al. (2000)[14,16] measured on 60 NCI cancer cell lines. These data are confirmed as
having generally low experimental error rate, i.e. a coefficient of variation of ∼ 20%, and represent
expression levels from 60 cell lines derived from cancers of many types [14,16]. Our findings suggest
that to confidently infer genetic networks with microarray technology, experimental design needs to
take into account a number of factors, including the need to a priori attribute splice variants the same
status as genes.

What is partial correlation?

The partial correlation of variables x and y with respect to z may be considered to be the correlation of
x and y after the effect of z is removed. For example, imagine that gene z influences the transcription
of gene x to the extent that their correlation is 0.7, while the effect of z upon y results in their having
a correlation of 0.8. Even if x and y have no direct relationship to each other, then due to their mutual
correlation with z, they will have a correlation of 0.56. Partial correlation subtracts the 0.56 to reveal
that, in this instance, x and y are conditionally independent. The partial correlation of x and y with
respect to z may be expressed as prxy.z = (rxy − rxzryz)/((1− r2

xz)(1− r2
yz))

1/2. Like covariances and
correlations, partial covariances and partial correlations go together. The partial covariance of genes
x and y with the effect of z removed is, pcovxy.z = σ2

xy − σ2
xzσ

2
yz/σ2

z . When x and y are conditionally
independent, both pcovxy.z and prxy.z take value zero. With a whole genome of genes, we would really
like to know the partial correlation of gene x and y after discounting the effects of all other genes,
set g (i.e. pcxy.g). With more than three genes the calculations become more complicated, but can
be expressed and solved using matrix notation. That is, prxy.g = −wxy/(wxxwyy)1/2, where wij is the
ij-th element of W = V−1 (the inverse of the covariance matrix of all genes).

Partial correlations also share a close relationship with multiple regression. If the expression of
each gene x for all the m experiments is written as a vector, x, it may be then be linearly regressed as
the dependent variable against all other genes expression. For example, x = ax+bxy.zy+bxz.yz, where
the first subscript indicates that x is the dependent variable, the second indicates the identity of the
explanatory variable, and the last part after the period indicates the other explanatory variables in the
regression. The relationship (prxy.z)2 = βxy.zβyx.z emerges, so prxy.z = βxy.z/abs(βxy.z)(βxy.zβyx.z)1/2,
where “abs” indicates absolute value (see chapter 27 of [17] for formal derivations). Such relationships
are not used herein, but see [8] for examples of their use in gene expression analysis. When there
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is insufficient data to solve the regression equations with all genes as explanatory variables, it is
necessary to pick just those that seem to be having a detectable effect using something like the AIC
model selection criterion [8]. We call such approaches Approximate Partial Correlations via Regression
(APCR).

If the value of pcxy.g is statistically indistinguishable from zero, then there is no evidence of a direct
genetic link between x and y. If pcxy.g is significant, then a direct link or edge may be added between
them (which may be of either positive or negative sign). In this way, whole genetic pathways may be
built up. The process of adding in links or edges is known as graphical modeling, and more derived
forms of this type of procedure include Bayesian Networks [7]. Graphical modeling has a long history
reaching back to path analysis pioneered by Sewall Wright in the 1920’s and used for none-other than
inferring the causal relationships between genes (e.g. Wright [21]).

2 Methods

The data set consists of 9,703 cDNA’s whose expression levels were determined in 60 cancer cell
lines and then transformed to log ratios [14,16]. From this data we are looking particularly at genes
associated with cancer, a fair number of which are involved in control of the cell cycle. Common
abbreviated names of these genes are shown in Figure 1 (for the full list see http://www.jsbi.org/).
Also included were a few housekeeping genes plus 30 genes selected completely at random; these are
used to help diagnose attributes of the data. Samples that showed very low expression levels and were
assigned a ratio of minus infinity by Ross et al. (0 to 6 such cases per gene studied here) were set to
a value of −7. Far fewer entries were listed as NA, where the experiment had failed completely at a
spot, and these were set to value 0. The analyses of [14, 16], and our own analyses of similar data,
suggest that the log-transformed data have multi-variate normal errors.

For calculating correlations and partial correlations, the programs SPlus and MIM [3] were used,
and these were also used for graphical modeling. Based on correlations, r, and partial correlations, pr,
we obtain 4 distances: δr = 1 − r and δpr = 1 − pr, with range 0 to 2; δ|r| = 1 − |r|, δ|pr| = 1 − |pr|,
with range 0 to 1 (see Eisen et al. [4] for implementations of the first and third distances).

For tree building PAUP*4.0b4 [18] was predominantly used. The methods used include UPGMA
and NJ which are algorithmic hierarchical clustering methods, an advantage of which is that they
run quickly, but cannot explore many alternative solutions. Ordinary least squares (OLS) and Fitch-
Margoliash (FM) or inverse-distance weighted least squares, are criteria based. They evaluate one tree
at a time and rely upon effective searching of the tree space to find the best solution(s) [19]. OLS
assumes that expected errors on distances are constant, while FM assumes that errors on distances
grow in proportion to the distance. Since correlations near 1 or −1 have the smallest errors, while
correlations near 0 have the largest errors, this is an approximately reasonable assumption when using
the distance 1−|r|. (Note, the parameter setting 0 of the program FITCH [6] also gives OLS, while the
setting 2 gives FM, c.f. [10]). The last method considered is minimum evolution, ME. This approach
optimises edge (branch or internode) lengths on a given tree using OLS, but then discards the residual
least squares and uses the sum of the edge lengths as the criterion of fit. Each criteria based method
can either allow or not allow negative edge length estimates. To distinguish these, a “+” indicates
when negative edge lengths are prohibited, e.g. OLS+. The algorithms in PAUP* for implementing
ME, OLS, and FM use the time optimal methods described in Bryant and Waddell [2].

3 Results

3.1 Clustering of Genes

For the purpose of examining how hierarchical cluster, or tree analysis, describes the relationships
between these genes, the best tree inference methods identified in a previous study were used (Waddell
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and Kishino unpublished). They were NJ, OLS+, FM+, ME+ and ME− combined with the Pearson
correlation, r, distances, δr and δ|r|. The second distance being important when considering the
transcriptional interaction of genes that are antagonistic. None of these tree-building methods assume
the distance data are ultrametric. Clustering methods, which had previously shown lesser performance
such as UPGMA (used by [4,14]), OLS− and FM−, were also considered.

Reported here is a new type of clustering for gene expression data where distances are functions
of the partial correlations (pr) of genes. Clusters based on such distances are particularly interesting
since small, close, and tight clusters should, in expectation, often translate to prominent features of
graphical models. Construction of such distance matrices is limited by the rank of the covariance
matrix of the genes, i.e., whether the correlation matrix can be inverted. This presently limits us to
clustering at any one time fewer genes than there are discrete experiments. The APCR method of
Kishino and Waddell [8] for approximating partial correlations avoids this limitation and should allow
genome wide assessment in future.

An improved understanding of the behaviour of tree algorithm/distance combinations for this type
of data is important, as selection of one method over another can result in considerable differences.
One way to assess tree inference methods is to consider the fit of tree to data. For this purpose, the
residual sum of squares from OLS+ given the selected tree topology is used. To negate the effect of
distance scaling the last value is reexpressed as a percentage distance error [6, 19].

There is a considerable improvement in fit of least squares estimators when the distance used the
absolute value of the correlation measure (Table 1). This indicates that, as one might suspect, the
absolute value based distances are more natural descriptions of transcriptional relations between genes.
In contrast, the difference in fit with and without the non-negativity constraint in tree inference was
generally minor. However, a difference is notable when using δpr, suggesting the need for extra caution
whenever interpreting trees based on this distance. In column 3 of Table 1, the best trees for each
method had their fit measured with an OLS+/δr combination, even though most were selected using
other distances. As expected, the fit was best on the trees which were originally selected using δr and
deteriorated consistently going to trees from other distance measures. However, even at worst, the fit
did not approach anywhere near that of randomly generated trees evaluated on the same data. The
same pattern holds for the OLS+/δ|pr| fit. The OLS+ %s.d. fit is also acting like a tree comparison
metric; column3 suggests that trees based on δ|r| are more similar to trees based on δr than are trees
based on partial correlation, while column 4 suggests that trees based on δ|pr| are more similar to trees
based on δpr than are trees based on correlation. The worse fit of trees based on partial correlation
may reflect the increased sensitivity of partial correlations to stochastic error (since they are based on
the inverse of the correlation matrix).

It is important to consider which cluster details are invariant with respect to the clustering method
used, since tree building or clustering of gene expression data is exploratory and somewhat arbitrary.
Accordingly, in Figure 1 strict consensus trees are shown for all trees from each distance measure.
Generally, small clusters near the tips are most consistent between methods. A feature found consis-
tently only in the trees based on correlation is a cluster of TP53, E2F4, and 14-3-3e. The trees that
use partial correlations show quite different clusters from those seen with δr and δ|r|. None of the
distance data observe the ultrametric condition, and this seemed particularly so with distances based
on partial correlations. Thus, in general, it is advantageous to use methods such as NJ and OLS+ in
preference to UPGMA.

Given so many different trees, each comprised of many clusters, it can be difficult to make general
statements about them. One way to measure relationships between trees is using a tree-to-tree distance
like the symmetric-difference metric [13], which counts groups in common between each pair of trees.
To visualize the relationships within this matrix we applied OLS+ to obtain the tree in Figure 2. The
results suggest:

1. Trees from a given distance tend to be much more similar to each other than trees from other
distance measures.
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Table 1: Fit of trees to the data.

Correlation Distances Partial Correlation Distances
Method Native %s.d.b OLS+ OLS+ Method Native %s.d. OLS+ OLS+

Fita %s.d./δcr %s.d./δ|pr| Fit* %s.d./δr %s.d./δ|pr|
UPδr - - 14.456 17.031 UPδpr - - 17.612 16.435
NJδr - - 15.007 17.001 NJδpr - - 17.437 16.451
OLS-δr 18.041 13.209 15.145 17.006 OLS-δpr 36.462 18.778 17.881 15.205
OLS+δr 21.238 14.331 14.331 17.000 OLS+δpr 184.932 42.291 17.408 16.499
FM-δr 19.364 13.685 15.142 16.932 FM-δpr 62.538 24.593 17.931 15.260
FM+δr 22.853 14.867 14.363 17.032 FM+δpr 165.514 40.009 17.640 12.679
ME-δr 16.322 - 14.528 17.027 ME-δpr 15.627 - 17.447 16.453
ME+δr 16.322 - 14.528 17.027 ME+δpr 15.894 - 17.440 16.458
UPδ|r| - - 16.768 16.926 UPδ|pr| - - 17.896 12.750
NJδ|r| - - 16.619 16.951 NJδ|pr| - - 17.783 13.948
OLS-δ|r| 7.524 8.530 16.809 17.011 OLS-δ|pr| 13.650 11.490 17.710 12.285
OLS+δ|r| 8.159 8.883 16.544 16.940 OLS+δ|pr| 15.612 12.288 17.746 12.904
FM-δ|r| 12.010 10.777 16.920 17.010 FM-δ|pr| 38.230 19.228 17.688 12.901
FM+δ|r| 13.399 11.384 16.502 16.963 FM+δ|pr| 44.795 20.814 17.655 12.432
ME-δ|r| 15.236 - 16.390 16.931 ME-δ|pr| 8.607 - 17.703 12.774
ME+δ|r| 15.236 - 16.390 16.931 ME+δ|pr| 8.646 - 17.705 12.702

a Native Fit is the score of the optimal tree on the data for the tree inference/data combination indicated in the
left column, note these are in different units for different prefixes; b %s.d. (column 2) is given where calculable
for the original tree and edge (branch) lengths on the original data; c the last two columns are refitting of the
tree topology using OLS+ on the data indicated, with fit again reported by %s.d. of observed to tree distances.

2. That the new distances, 1− pr, 1− |pr|, produce quite distinct trees from those generated using
previous methods, and these trees are more similar to each other than distances based on Pearson
correlation, r.

3. That the trees previously identified with the best tree inference methods for this type of data
(i.e. NJ, OLS+, FM+, ME, do typically tend to cluster together (with the exception of FMpr).

4. That trees of the most different methods are very close to the maximal possible tree partition
distance apart, i.e. in topology very little in common.

5. The ME methods behave similarly, irrespective of whether they have a non-negativity con-
straints, and share a more distant relationship with NJ. In contrast, the least squares methods
behave quite differently, to the extent that FM+ and OLS+ are distinct but more similar to one
another than either is to least squares allowing negative edges.

6. The diversity of the different trees from the same distances can quickly be ascertained using NJ,
OLS and OLS+.

As a technical note, using a tree to relate tree-building methods seems to be quite informative. An
advantage of tree to express the relative properties of objects is that the final expression is insensitive
to the scaling and rotation effects that occur with multi-dimensional scaling techniques.

Taken together, the large partition distance between trees but the generally reasonable OLS+
fit of all trees on any distance might seem contradictory. However, the interpretation that seems
most reasonable is that all the trees contain sets of genes that wander about considerably (backed
up by reference to the trees themselves), but some general structure is preserved in all the analyses.
Additionally, edge lengths should also be taken as part of the reading of such cluster data, and is also
a reason for favouring methods that allow all edges to have independent lengths, herein all methods
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Figure 1: Consensus trees of trees based on different distances, (a) δr, (b) δpr, (c) δ|r|, (d) δ|pr|. The
housekeeping genes are A2Ma, B2Mi, Ker19, and HLA1F.
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Figure 2: An FM+ tree relating the tree inference methods together based on the partition metric
distance between trees. The root is at the mid-point. CON denotes strict consensus trees. The fit to
the matrix of symmetric tree differences was very good, having a residual of only 3.46%.

except UPGMA. Thus, a gene at the end of a short terminal edge may not be directly clustered with
another gene, but the path between them may be short, so it should be expected that they might have
a similar pattern of transcriptional expression. Mapping distances back onto trees confirms the trees
are a reasonable, but not perfect, representation of the raw distances.

3.2 Graphical models

The data exhibit a slight sparsity problem due to missing cells. While the matrix dimension is 60,
the rank of the variance-covariance matrix is approximately 40 to 50, depending upon which genes
are included. Graphical modeling of this many variables is a challenging exercise, so results should be
regarded as exploratory until the underlying nature of the data is known to be well matched to the
model being used [3, 9].

Application of nearly any of the refined graphical modeling techniques to this data leads to large
numbers of significant links, e.g. > 25 per gene. Thus, with 50 or so genes, the resulting graph is highly
linked and looks like a string ball. Clearly, the hope that picking a set of a priori genes and getting
a clear and informative model needs to be tempered. A key feature is that the data show a poor fit
to the model (e.g. deviance of 2000 with degrees of freedom 1000). While there is strong evidence of
poor fit, it should be remembered that phylogenetic models, for example, fit most data very poorly,
but are often of considerable accuracy and utility even on occasions. Unfortunately, none of the usual
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variations on the model, e.g. Box-Cox transformations, AIC or BIC or F ratio edge selection criteria,
forward or backwards edge selection, adjusting the models for sparsity, or making edge inclusion more
stringent e.g. P=0.01 versus P=0.05, results in a graph that seems any more intuitively, or biologically,
pleasing. For example, increasing stringency of edge selection to 0.001 would often see a huge drop
in the number of edges in the graph, but different methods did not agree on the model then selected.
Further, unexpected links between cancer and housekeeping still occurred at this higher stringency.

Latent variables are a likely problem since there are many important genes missing from the data,
for example just one member of the E2F family of six was found on the array. To assess their probable
effect, we looked at the partial correlations between 30 randomly selected genes. The distribution of
partial correlations had more than 5% of values with absolute values of nearly 0.3, as opposed to 5%
greater than an absolute value of 0.2 as expected under the model. This observation also concurs with
the rapid decrease in the number of selected links as the stringency went from 0.05 towards 0.001.

3.3 Cell cycle and the status of TP53

A subset of the cancer related genes selected are close to the cell cycle, including TP53. Since the
cell lines examined by Ross et al. were all derived from advanced cancers, then experienced further
selection in culture, activity-altering mutations are a concern. For example, loss of function TP53
mutants are often over expressed compared to wild type (WT) TP53, and indeed only 15 of the cell
lines considered have WT TP53 [12]. Unfortunately, such data is not available at present for other
genes in all cell lines. Thus, there are good reasons to believe that parts of the data will not behave
in a rational way with regard to inferences based on observed correlation and related measures.

To examine this factor further, we apply graphical modeling to a subset of 11 genes, which are
close to cell cycle regulation, then look at the differences in expression pattern between mutant and
WT TP53 cell lines. The small number of genes is due to there being only 15 WT lines, so that,
as discussed previously, the partial correlation matrix is not well conditioned with more variables.
Interestingly, mutant TP53 cell lines did not show over-expression of TP53 with respect to WT TP53
lines, as has been reported previously, e.g. [22]. Rather, the mutant lines show a greater dispersion of
TP53 levels than WT lines, a factor partially explained by their three times greater number.

The graphical model from coherent backward selection using F ratio tests and P=0.05 is shown
in Figure 3(a) and next to it in 3(b) is the model selected from the mutant TP53 cell lines. The
estimated models are quite different, and neither shows features one might expect such as positive
links between E2F4 and TP53, TP53 and WAF1, or TP53 and BAX [22]. The fit of the model is
marginal for the wild type data, but acceptable for the mutant data. As Figure 4 shows, generally,
the correlations amongst genes in the mutant cell lines are smaller than in the WT lines, but due
to there being far fewer data points with the latter, more features are attributed significance in the
mutant data. Consistent with the quite different models selected, there is no apparent relationship
between pairwise correlations estimated with each class of cell line, and also no apparent relationship
between the inferred partial correlations (Figure 4). Examination of pairwise plots of gene expression
verifies that most correlations and pairwise relationships are not striking, and are often exaggerated
considerably by a single outlying observation.

One relationship that has changed noticeably in the WT lines is the appearance of a negative
correlation between TP53 and WAF1 (borderline significant at P=0.06 when each is regressed sep-
arately). In the mutant lines there is no significant pairwise relationship. WAF1 is a potent cancer
suppressor gene activated by WT TP53. Thus, if TP53 is still active in a cancer cell it makes sense
that its agent is not. The usual prediction is that WAF1 would be mutated, although a lingering
mystery surrounds failure to find somatic mutations of this gene in most cancers (however, there is
evidence that mutant population variants of WAF1 are more common when TP53 is wild type, [11]).
A couple of other genes that show borderline significant changes in expression between WT and mu-
tant cell lines are p16 (from no to a positive association with TP53) and CycD (from no to a negative
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Figure 3: Graphical models of cell cycle gene interactions in cell lines containing either wild type or
mutant TP53. (Note, dashed lines indicate a negative partial correlation).

Figure 4: Estimates of correlations and partial correlations coming from cell lines that are either wild
type or mutant for TP53.
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association). An interesting feature lacking in the cell lines mutant for TP53 is the frequently reported
inverse relationship of p16 and Rb expression levels [5]. This feature does show up in the graph of
WT TP53 cells, due to a negative partial correlation, although the direct pairwise relationship is un-
convincing (and the numerical significance being due largely to a single outlier). Based on predictions
and observations taken together, there seems to be a good case that important genes in this data
are showing conditional distributions which are dependant upon their mutation status, and modeling
them in cancer cell lines would at least require mutations’ status in all cell lines. It also seems likely
that there is a fair bit of “washing over” caused by multiple complex conditional distributions, so that
the unconditional distributions show little evidence of any particular trend.

4 Discussion

Ross et al. [14] and Scherf et al. [16] did not emphasise the potential impact of mutations in cell
lines upon their own analyses. However, it was found above that the status of a gene (here TP53)
in a particular cell line, lead to quite different observed correlations between genes. In the database
of Ross et al., TP53 is associated with a list of mostly unnamed genes showing the best numerical
correlation with it. However, many of these genes show only partly resolved expression patterns, that
is many −inf and NA results in experiments. These must be tempting targets for further functional
elucidation. Yet, given that TP53’s expression level seems to be decoupled from its normal behaviour,
it is uncertain what to make of such associations. Add to this uncertainty the fact that there are so
many genes on the array, so that some by chance will show a correlation with TP53, plus partial data
for some genes, it would not be surprising if most of this list were false positives in the sense they do
not have any direct association with TP53.

What is the information content of the Ross et al. data with respect to modeling genetic links?
While the data seems technically excellent, with a claimed coefficient of variation due to experimental
errors of approximately 20–30%, a number of lines of evidence suggest the information content is low
in its present form. These include very weak pairwise relationships, including cases of genes expected
on prior data to have a clear relationship (e.g. TP53/Waf1, p16/Rb). Another is the lack of any
consistency of relationship for pairs of genes between the TP53 wild type and the mutant cell lines.
Expression profiles being conditional on the mutation status of a selection of key genes are expected to
be a considerable part of the explanation. Expression profiles of a large number of genes may allow us
to classify cancers successfully, even if the data is accompanied by large systematic errors. However,
these biases seriously mislead us in the search for genetic links and functional relationships between
important genes.

The results offer valuable angles on the design/analysis of microarray experiments. If we are to
use microarray data to explore directly the causal links between human genes, and not just to offer
suggestions for bench experiments to follow up, then experimental design needs to be considered.
For example, if cancer cell lines are going to be used, then the mutation status of genes needs to be
catalogued. Given the difficulty of doing this, it tends to suggest use of wild type cells and tissues in
preference to cancer cells and cell lines in many experiments. Further, the impact of latent variables
has to be minimised, so the array must be designed to include any gene suspected of being in a
neighboring pathway or process of interest.

We predict that, due to a combination of the mutant conditional distribution effect and the latent
variable effect, it will be especially important to have all splice variants of a pathway present and mon-
itored. Splice variants are being recognised as increasingly important in many regulatory processes,
e.g., [1, 15]. Splice variants can often act in antagonistic ways, e.g. a gene of exons A and B, has
a splice variant A which lacks B, the catalytic domain, and effectively shuts down the action of AB
due to competitive binding. Thus, for modeling regulatory pathways splice variants should, as far as
possible, be accorded the status of the unit of interest. A challenge ahead is to catalogue such variants
and implement them on microarrays. For this purpose, oligonucleotide arrays seem to have a natural
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advantage over cDNA arrays. However, for many genes, carefully selected partial cDNA sequences
will allow cDNA microarrays to detect and distinguish known splice variants.

Beyond mutant genes and splice variants, there are other factors know to make expression patterns
highly conditional. An important consideration is how much protein has built up in the cell. This
can be measured using protein arrays, and this is usually considered an aspect of proteomics. In
addition, the behaviour of proteins is conditional upon factors such as phosphorylation status, cell
localization, and the local frequency of binding partners. When these factors come to dominate the
direct effects of transcription regulation, it is apparent that the input to the model of cellular pathways
needs to grow. Clearly, we are on the road to full-scale models of a cell. Protein frequencies can be
incorporated into the same types of framework discussed here, and in addition, there is the challenge to
accommodate conditional expression levels and protein levels simultaneously. Accordingly, distinctions
between proteomics and expression studies disappear at the analysis level, and each must be aware of
the potential impact of the other when elucidating pathways.

In conclusion, the methods presented here offer useful ways to progress our understanding of
microarray data. Clustering based on partial correlations, or APCR based distances [8], should be
useful steps towards finding a sufficiently tight and closed set of genes to use for graphical modeling,
or any other method aimed at uncovering causal relationships. The use of model selection criteria
such as AIC to limit the estimation of partial correlations in APCR to just the envelope of genes
with significant impact [8], should reduce stochastic noise in partial correlation distances and improve
the robustness of clustering using partial correlation distances. Graphical modeling itself, seems a
natural partner to detailed expression data, and has the advantage of being able to model conditional
distributions of continuous variables. Extensions to the methods presented may also help to tackle
the multi-layered problem of integrating gene expression plus both protein expression levels and their
conditional states, e.g. phosphorylated or not. Together these define a much more complete picture of
most regulatory pathways. An important step in moving to that level is to understand why data don’t
match the expectations of models, and considering to what extent the data gathering can be made
more appropriate to the models at hand. It is critical to get the nature of the experiment correct,
rather than hoping that large volumes of data and databases will make gene interactions apparent.
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