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Pattern Recognition vza Neural Networks

B. D. Ripley

Pattern recognition has a long history within electrical engineering but has
recently become much more widespread as the automated capture of signals and
images has become cheaper. Very many of the applications of neural networks
are to classification, and so are within the field of pattern recognition. In this
chapter we explore how neural networks fit into the earlier framework of pattern
recognition, and show by some examples that that framework can help us to
make better use of neural networks for classification.

1 What is Pattern Recognition?

Pattern recognition is concerned with making decisions from complex patterns of
information. The goal has always been to tackle those tasks presently undertaken
by humans, for instance to recognize faces, buy or sell stocks and to decide on
the next move in a chess game, but simpler tasks have been considered which
were within the reach of the hardware and software available. A few of the tasks
which have been tackled are

Distinguishing a bicycle and a pedestrian on a level crossing [1].
Classifying galaxies (as spiral, elliptical and more finely).
Medical diagnosis.

Reading Zip codes (US postal codes) on envelopes [21].
Reading hand-written symbols on a pen-pad computer.
Predicting suitable habitat for Tsetse flies [29].

Financial trading [28].

Species and sex of Leptograpsus crabs [7].

Forensic studies of DNA, fingerprints [8], glass fragments [30, 32] ....
Identifying incoming missiles.

Credit allocation rules [10].

Damage to clothes by washing powders [9].

In all these of tasks there is a predefined set of classes of patterns which might
be presented, and the task is to classify a future pattern as one of these classes.
Such tasks are called classification or supervised pattern recognition'. Clearly

1The conference proceedings [14] provides a good view of pattern recognition applications
prior to the current upsurge of neural networks.
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someone had to determine the classes in the first place, and seeking groupings
of patterns is called cluster analysis or unsupervised pattern recognition.

The patterns themselves can be of many different forms, as our list of exam-
ples shows (although images are a common source). In the parlance of the field,
patterns are made up of features, which are measurements used as inputs to the
classification system. For example, in the crabs task the features were four size
measurements of the crab’s carapace, plus its body depth. Where the tasks are
images, the major part of the design of a pattern recognition system is to select
suitable features; choosing the right features can be very much more important
than what 1s done with them subsequently.

Cluster analysis has been applied to the pattern recognition field itself. One
grouping which is widely recognized 1s into ‘statistecal’ and structural or syntactic
pattern recognition. (The term ‘statistical’ comes from engineering, not from
statisticians.) In statistical pattern recognition very little is assumed about
the classes of patterns, all the information being learned from examples. In
structural pattern recognition, qualitative information about the classes is used
to structure the problem; in syntactic pattern recognition that information is
provide by the grammar of a formal language. There are very few working
examples of structural pattern recognition systems; an interesting demonstration
system was provided by Chou [12] to convert typeset mathematical formulae into
a typesetting language.

What is a neural network?

This is a much harder question to answer that might appear, since there a num-
ber of methods published in the neural networks literature for classification which
seem to me to be neither neural nor networks, in that they have no biological
motivation, and information is not just encoded in the connection strengths.
One, the probabilistic neural network of [35, 36], causes considerable confusion,
since it is also not probabilistic?. Kohonen’s learning vector quantization (LVQ)
methods [18, 19, 20] are commonly regarded as neural networks and have param-
eters called ‘weights’, yet these are not connection strengths, and the methods
are much more closely related to classical k-nearest neighbour methods. (These
connections are discussed in [34].)

To confine this chapter to a reasonable length, we will confine attention to
feed-forward neural networks (also known as multilayer perceptrons). It would
have been equally easy to use radial basis functions, since all we require is a
flexible family of functions mapping multiple inputs to multiple outputs.

Learning from examples

Popular accounts of neural networks often stress their ability to learn from ex-
amples. For example

2Tt is an unacknowledged re-naming of the classical technique of kernel discriminant analysis;
see for example [17]. To add yet more confusion, the ‘probabilistic neural network’ of [38] is
a different classical statistical method, the use of mixtures of Gaussian distributions. Chou &
Chen [13] call that a ‘new fast algorithm for the effective training of neural classifiers’!
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Harmful emissions could become a thing of the past thanks to a
computerised “car mechanic” that is being developed at Aston Uni-
versity’s Neural Computing Research Group. ... Neural networks
are computer programs with a brain-like ability to learn by example
to solve problems. Such a system could be used in a car to optimise
power and reduce emissions by adjusting ignition timing to match
the circumstances such as, load, temperature, humidity and speed.

(Sunday Times, 16 July 1995, page 2-9)

However, neural networks are only the latest of a long line of methods going back
200 years which ‘learn from examples’. There have been many developments in
the fields of statistics and statistical pattern recognition. There 1s a subfield of
artificial intelligence research called machine learning which 1s concerned with
learning logical concepts from examples. Consider the following anecdote which
I heard from Professor Jim Alty:

JA was visiting Cairo, and took a taxi with an English-speaking
driver.
JA noticed that the taxi driver did not stop at red traffic lights.
Later, JA noticed that the driver did sometimes stop at red traffic
lights, and that these traffic lights were also manned by policeman.
This spawned a new hypothesis:
‘Taxi drivers in Cairo only stop at those red traffic lights
which are manned by a policeman.’

Later still, the taxi drove through a red traffic light which was manned
by a policeman.

Now JA can not fathom out the rule, and asks the driver for an
explanation.

‘Ah, but that is obvious. He is my brother.’

This was given as an example of a task for a machine learning system. It shows
some new features:

(1) It includes ‘learning by query’. Human learning allows us to ask for expla-
nations, to ask for the classes of examples we construct (a classic paradigm
of science) and to ask for counter-examples to current hypotheses [3].

(i1) The induced rule has considerable generalization — to all taxi drivers from
one, for example. (Opinion polls generalize from a sample to the population
of voters.)

(iii) Explanation is important — a ‘black box’ solution such as a neural network
would be unacceptable.

(iv) A precise rule may need unobserved information.

The third point can be very important, for example in getting a medical diagnosis
system to be accepted by medical practitioners. We found that the zoologists
involved in the project on Tsetse fly habitat adopted a classification tree [29]
rather than a neural network solution even though the latter was more accurate,
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because they could interpret the classification tree. Many classification tasks
have an element of discrimination, describing the distinguishing features of the
classes. Neural networks are not usually suitable for such tasks.

A medical diagnosis example

We will illustrate pattern recognition by data on diagnostic tests on patients with
Cushing’s syndrome, a hyper-sensitive disorder associated with over-secretion of
cortisol by the adrenal gland, taken from [2]. This dataset has three recog-
nised types of the syndrome represented as a, b, ¢ in Figure 1. (These encode
‘adenoma’, ‘bilateral hyperplasia’ and ‘carcinoma’.)
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F1a. 1. Results of two diagnostic tests on patients with Cushing’s syndrome.

The observations are urinary excretion rates (mg/24h) of the tetrahydrocor-
tisone and pregnanetriol, and are considered on log scale. One of the patients
of unknown type (marked u) was later found to be of a fourth type of the syn-
drome, and another was measured faultily. Such outliers are a common part of
a pattern recognition task, and should be reported as outliers, not assigned to
one of the classes.

This 1s a very small example, with few examples and only two features. It
was chosen because it is easy to illustrate. Yet it is not atypical, since other
tasks have many more examples and many more features, so the examples are
often equally sparse in the feature space.

2 Statistical Pattern Recognition

We now formalize the pattern recognition task. The examples belong to one of
K classes, and the allowed decisions are to declare an example to belong to one
of these classes or ‘doubt’ D or ‘outlier’ ). The motivation behind the ‘doubt’
decision is to allow difficult examples to be passed to a more expensive classifier
(say a human expert), possibly after making further measurements. This can be
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a very helpful strategy, to allow a machine to deal with routine cases and let the
experts deal with those where their expertise is required. A Zip-code reader will
inevitably have difficulty with some people’s writing, but a human may be able
to understand the words in the overall context, especially if (s)he knows that
Mrs Jones lives at 2034 Sunset Boulevard.

The training set T 1s a set of n correctly classified examples; future examples
present a pattern X for a decision about its class. The training set is assumed
to be a random sample from the same population as future examples.

We need to assign costs Cjj to making the wrong decision k& when j is the
true class, and this should be done carefully, as different mistakes can have quite
different costs. (For example, the cost of refusing credit to a shopper who would
have been a good payer i1s quite different to the cost of giving credit to a poor
payer.) Decision theory assumes® that everything can be reduced to costs (or
utilities) and that rational decision making will take the decision which minimizes
the expected cost. Not everyone will be happy with this approach, not least the
patient who i1s mis-diagnosed; the goal is long-run performance, not to do the
best for each individual.

The rule which minimizes the expected cost of the decision is called the Bayes

rule. It minimizes
Z Cjr p(J | x).
J

over decisions k (one of the classes or doubt D). The posterior probabilities
p(k | x) are central to the theory; they give the probability that an example with
features x has true class k. On the other hand, the prior probabilities mp, describe
abundance of the classes in the whole population, before the features are given.

A very common choice of costs is Cj; = 0, Cj; = 1 for definite errors, and
d < 1 for declaring ‘doubt’. Then Bayes rule is to declare the action

[k ifpk|x)=max;p(j|x)>1-4d
e(x) = D ifmaxjp(jlx)<1—-4d ’

If two classes both have the highest posterior probability, either can be chosen
(as the expected cost is the same under either choice).

If the posterior probabilities were known, there would be nothing more to be
sald. They are almost always unknown, and the task is to learn them from the
training set. There are two approaches to learning probabilities.

Sampling paradigm
In this approach we describe the observations from examples of class k, for
example by a Gaussian distribution. Let pp(x) denote the probability density

3but justifies this assumption by deriving it from slightly simpler axioms.
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function® of examples from class k. Bayes’ formula gives

Rk = B

so the rule is to pick the class which maximizes py(x)n;. Most of these quan-
tities will depend on parameters (such as the mean and variance of a Gaussian
distribution) and these are estimated from the training set. Figure 2 shows a
classifier for the Cushing’s syndrome task based on Gaussian distributions for
each of the three classes.
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Pregnanetriol
0.50 1.00

0.05 0.10

5 10 50
Tetrahydrocortisone
Fiag. 2. A classification rule for the Cushing’s syndrome task. The decision
boundaries are shown; the left, central and right regions are classified as a, b
and c respectively. Shown dashed are contours of p(x) relative to the average
on the training set.

This has been the main approach in statistics and pattern recognition. Notice
that we have to learn more than we need from the examples, as Figure 3 shows.
We end up knowing the joint distribution of features and classes, with density

p(x, k) = p(k | x)p(x) = pr(x) 7

where p(x) = ), Ttpr(x) is the density of the distribution of the features over
all examples irrespective of class.

In the Cushing’s syndrome task we also need to consider potential outliers,
so contours of p(x) are shown relative to the average value for the training set.
Thus two of the unclassified examples have p(x) less than 10% of the average
for the training set, one much less than 1%. Using low values of p(x) to declare
outliers is reasonable if outliers can be thought to occur uniformly over the figure.

“For examples from class k, the probability of the observed features lying in a small set of
volume A centred on x is about p(x)A.
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Fi1c. 3. It is not always necessary to model the class-conditional densities py(x)
(upper figure) accurately, as the posterior probabilities p(k | x) in the lower
figure are effectively unchanged by most aspects of modelling the right peak
of the density shown dashed. Ounly the densities in the interval [1, 2] matter.

Diagnostic paradigm

In this approach we learn p(k | x) directly, by looking at examples with similar x
to the new example, and using the distribution of classes amongst those examples
to predict p(k | x). The simplest such approach is that of k-nearest neighbours, in
which the & closest examples in the training set are found, and the distribution
of their classes provides the estimate of p(k | x).

In the diagnostic paradigm it is usual not to estimate p(x), as this is not
needed for classification. Something of the sort is however needed to detect
outliers, which are normally ignored in the diagnostic paradigm. This can be
very dangerous, not least because high posterior probabilities p(k |x) can lead
to unwarranted confidence in the classification rule.

The major approach in the diagnostic paradigm within statistics has been
logistic discrimination. First consider just two classes. Then the log-odds on

p(2]x)
p(1]x)
for the logit function logitp = p/(1 — p) whose inverse is the logistic function

L(z) = €*/(14€”). Now suppose the log-odds are a linear function of the features,
0

class 2 are

logit p(2 | x) = log

logitp(2|x) = o+ BT x,
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p21%) = fa+pTx),  pllx)=1-p@2]x).  (21)

This may start to look familiar; it is a feed-forward neural network with no
hidden layer and just one output unit. Think of this in two parts, a linear
function plus a logistic output stage. To achieve a more flexible model we can
replace the linear function by a non-linear function f(x) = logitp(2|x) and
approximate that by a neural network with hidden layer(s). Although this is a
feed-forward neural network, the occurrence of the logistic function in the output
stage is coincidental. With a radial basis function network, we would still apply a
logistic function to the output. Thus it is appropriate to think of a feed-forward
neural network with linear output units as a flexible non-linear function, and
then consider what to do with the outputs.

Now suppose we have more than two classes, which are not ordered in any
way (such as the digits in Zip code recognition). The natural generalization is

fr(x) =logp(k|x) = ar + B;‘:X

known as a log-linear model or multiple logistic regression. Note that we can
take oy = 3; = 0 since only ratios of probabilities matter (since they sum to
one). The probabilities are given by

plk|x) = 75 %fxék](cj()x) (2.2)

Once again we can replace the linear part by a non-linear function, this time
a neural network with hidden layer(s) and linear output units. In the neural
network literature this procedure is known as softmaz [5] although it is has been
known for many years.

Softmax 1s appropriate if we want to classify into one of K classes, and an
example must belong to exactly one. A different problem sometimes occurs in
medical diagnosis. We have K diseases, and the patient may have none, one
or more diseases. The natural approach is to build a logistic model for each
disease; this corresponds to a neural network with a separate logistic output
unit for each class. This 1s much more widely used than softmax, even though it
1s rarely appropriate. The difference is often small, but can be significant when
more than one class is given appreciable posterior probability.

If the K classes are ordered other methods (Mathieson, 1995) are more ap-
propriate. Examples from our list in section 1 are the degree of risk in granting
credit to a shopper, the amount of damage to clothes, and the degree of elliptic-
ity of a galaxy. Softmax may be sufficiently accurate if the costs Cj; are chosen
to reflect the structure in the classes.

3 Fitting the Neural Network

We have now seen that neural networks provide a natural generalization of logis-
tic discrimination to estimate posterior probabilities p(k | x) within the diagnostic
paradigm. How should the parameters w (the weights in neural network jargon)
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be chosen? We have a function f(x;w) = (fx(x; w)), the fitted neural network,
that determines the posterior probabilities by (2.1) or (2.2).

The most common answer 1s to choose w to maximize the log-likelihood,
which is the sum of log p(k | x; w) over the examples of the training set (with x
the observed features and k the given class for the example). This is negative,
and it 1s equivalent to minimizing

B(w) = Y ~logp(k )

T

This is sometimes known as logarithmic scoring, since it penalizes the procedure
by the logarithm of the probability of the event which occurred. Small probabil-
ities lead to large surprise and hence a large penalty. Maximizing the likelihood
has been suggested many times from several different viewpoints in the neural
networks literature, but has been used for decades in the logistic discrimination
literature.

Maximum likelihood is the commonest theoretical answer, but not the most
commonly used method, which is to fit the posterior probabilities by least
squares, for example for two classes to minimize

E(w) = [y —p(2|x)]

T

where y 1s one if class two was the true class, otherwise zero. This has no merits
except widely-available software.

There are more complicated but better answers. The approach so far adjusts
the weights w of the network to fit the posterior probabilities to the training
set 7, then acts as if p(k | x; w) are the true posterior probabilities. The more
flexible the function f(x;w) (for example with more hidden units) the better we
will be able to fit to the training set, but not necessarily to the true posterior
probabilities. Thus we will normally find that as we increase the number of
hidden units, the performance on future examples at first improves and then
becomes steadily worse. This can be overcome within the predictive approach
[2, 32, 34] which takes the uncertainty in the fitted weights into account, and is
discussed in the chapter by Bishop in this volume. (This was used for Figure 2.)

An easier (but less theoretically satisfying) way to avoid over-fitting the train-
ing set is known as regularization (see, for example, [27]). This penalizes ‘wiggly’
functions f(x; w), often for neural networks by adding A times the sum of the
squared weights to E(w). We can see the effect of this on a synthetic example
from [30]. There are 125 examples from each of two classes. Since the example
is synthetic, all the probabilities are known, hence the Bayes rule; it make 8.0%
errors. As Figure 4 shows, the (linear) logistic discriminant is inadequate. The
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o . —— Bayesrule
—— logistic discriminant

x

Fic. 4. A synthetic example with classes marked by open squares and filled
circles.

neural networks come quite close to the Bayes rule:

Bayes rule 8.0%
Logistic discrimination 11.4%
Neural network with 3 hidden units 11.1%
ditto with weight decay 9.4%
ditto with 6 hidden units 9.5%

Note the effect of weight decay in Figure 5. When weight decay is used adding
more units makes relatively little difference to the solution.

One difficulty which is often overlooked is that the algorithms to fit neural
networks only find a local minimum of the fit criterion. There will normally
be several different local minima® even when weight decay is used, as Figure 6
shows. Even if we can afford the CPU time to find many local minima, it 1s far
from clear how we should choose between them, as the best fit on the training
set often does not work best to predict future examples. If more CPU time can
be used, the different local minima can be combined in some way. Theory ([34],
§2.6) suggests the optimum way is to average the posterior probabilities, that is

to use
p(k|x) = Z amp(k | X; W)

where the w,, are the weights corresponding to different local minima, and the

5All the examples presented here used a general-purpose optimization algorithm to fit the
weights; in my experience this works a great deal faster and more reliably than the on-line mod-
ifications of gradient descent which are commonly described in the neural network literature.
Except for Figure 6, the first solution found was used.
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—— Bayesrule NN
3-node neural net without weight decay N\

—-—  3-node neural net with weight decay N

——  6-node neural net with weight decay N NN

Fic. b. Neural network rules for the synthetic example.

(ay,) form a convex combination®. Such ideas go back at least to Stone (1974),
but have been widely suggested more recently, for example by [22, 6, 39, 40, 26].
The (o, ) may be chosen by the methods below, but often taking equal weights
over the local minima is better than selecting any one. Note that this averaging
procedure needs more CPU time both to train the network and to predict future
examples, but is trivial to parallelize if multiple CPUs are available.

Network complexity

We do have to choose the complexity of the fitted neural network, which is
controlled both by the number of hidden units and the weight decay parameter A.
In fact the number of hidden units (provided it is enough) is not very important
in the presence of weight decay as Figures b and 7 show. In fact the value of
A = 0.01 used was chosen from some Bayesian heuristics [31] and is often suitable
for classification problems if the inputs are roughly scaled to the interval [0, 1].
More sophisticated methods of choosing complexity are the subject of current
research [33].

The other way to choose complexity is based on estimating future perfor-
mance. Suppose we have another set of classified examples V called the vali-
dation set. We then fit many different networks, evaluate their performance on
V, and choose the best. Finally, yet another set of examples, the test set, can
be used to measure the performance of the chosen network. (These terms are
commonly muddled in the neural networks literature.)

Quite often (as in the examples here) we do not have enough examples to keep
separate training, validation and test sets. We can squeeze more out of small
sets of examples by cross-validation [37]. This divides the training set 7 into V

6Each ot > 0 and 3 ap = 1.
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Fic. 6. Four solutions for the synthetic example based on a neural network with
six hidden units. Dark values indicate a high posterior probability for class
two, shown by open squares on earlier figures.

parts. Then each part in turn is kept as the validation set, and the network(s)
are fitted to the remaining examples and used to predict those in the validation
set. When this has been done V times, every example has been predicted, and
the performance of the network(s) computed. There are two common choices of
V. One is to leave each example out at a time, and train the network(s) n times.
This 1s slow, and not particularly desirable theoretically. It is better to take V'
as 5 or 10.

Cross-validation validates performance. The same procedure can be used to
test the performance of the chosen classifier, but note that we need to cross-
validate the whole procedure, including the choice of network. This often results
in cross-validation within cross-validation, and V2 fits.

4 Forensic glass

Our main example comes from forensic testing of glass collected by B. German on
214 fragments of glass, and taken from [25]. Each case has a measured refractive
index and composition (weight percent of oxides of Na, Mg, Al, Si, K, Ca, Ba
and Fe). The fragments were originally classed as seven types, one of which was
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Fic. 7. Neural network rules for the Cushing’s syndrome task, with 3, 6 and
12 hidden units, fitted with weight decay. The logistic discriminant is also
shown.

absent in this dataset. The categories which occur are window float glass (70),
window non-float glass (76), vehicle window glass (17), containers (13), tableware
(9) and vehicle headlamps (29). The composition sums to around 100%; what
1s not anything else is sand.

This example is really too small to divide, so methods have been assessed by
10-fold cross-validation. Linear logistic discrimination was assessed as having an
error rate of about 36.0%, whereas choosing the class of the closest match had
an error rate of about 23.4%. To choose a neural network, we took a different 10-
fold cross-validation split, and averaged the predictions over all the local minima
which were found. The cross-validated error rates were

#(hidden units)
A 2 4 8

0.0001 30.8 23.8 27.1
0.001 304 26.2 26.2
0.01 31.8 299 299

where X 1s the weight-decay parameter. This suggests that we choose 4 hidden
units and A = 10™%, and this was assessed to have an error rate of 23.8% on the
cross-validated test set.

This 1s a salutary example. After expending about 2 hours’ CPU time on
a Sparc 20/612, we have achieved comparable performance to the simple rule
of quoting the class of the nearest example in the training set, and both are
‘black boxes’ with no explanatory power. This is not an unusual conclusion, as
used well nearest-neighbour methods are often amongst the best performers. In
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Mg<24695}K

Mg>2.695
Na<13.785 Al<1.42
Na>13.785 Al>1.42
Al<1.38 Ba<0.2 RI<-0.93
Al>1.38 Ba>0.2 RI>-0.93
‘WinNF‘ ‘ Con ‘ ‘ Tabl ‘ ‘ Head‘ ‘ Veh ‘
K<0 29
K>0.29
Mg<3 75

Mg>3 75

Fia. 8. Classification tree for the forensic glass task.

contrast, the classification tree shown in Figure 8 had an assessed error rate of
32.2%, but can be interpreted rather easily.

5 Further Reading

The classic book on pattern recognition is Duda & Hart [15]; although over
twenty years old is still contains much relevant material. There have been sur-
prisingly few more recent books, but Fukunaga [16] updates some of the material.
Books which include a treatment of pattern recognition using neural networks
are just beginning to appear. Bishop [4] is principally on mainstream neural net-
work methods for classification, whereas Ripley [34] considers neural networks as
one of many tools for pattern recognition. The collections edited by Cherkassky
et al. [11] and Michie et al. [24] contain some excellent overview articles, and the
second also contains a careful comparative study on (mainly) real problems.
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