
IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2010 1

Towards High-Throughput, Multi-Criteria Protein
Structure Comparison and Analysis

Azhar Ali Shah, Gianluigi Folino, and Natalio Krasnogor*

Abstract— Protein Structure Comparison (PSC) is an essential
component of biomedical research as it impacts on, e.g., drug
design, molecular docking, protein folding and structure pre-
diction algorithms as well as being essential to the assessment
of these predictions. Each of these applications, as well as
many others where molecular comparison plays an important
role, requires a different notion of similarity that naturally
lead to the Multi-Criteria Protein Structure Comparison (MC-
PSC) problem. ProCKSI (www.procksi.org), provides algorithmic
solutions for the MC-PSC problem by means of an enhanced
structural comparison that relies on the principled application
of information fusion to similarity assessments derived from
multiple comparison methods. Current MC-PSC works well
for moderately sized data sets and it is time consuming as it
provides public service to multiple users. Many of the structural
bioinformatics applications mentioned above would benefit from
the ability to perform, for a dedicated user, thousands or tens
of thousands of comparisons through multiple methods in real-
time, a capacity beyond our current technology. In this paper
we take a key step into that direction by means of a high-
throughput distributed re-implementation of ProCKSI for very
large data sets. The core of the proposed framework lies in the
design of an innovative distributed algorithm that runs on each
compute node in a cluster/grid environment to perform structure
comparison of a given subset of input structures using some
of the most popular PSC methods (e.g. USM, MaxCMO, Fast,
DaliLite, CE and TMalign). We follow this with a procedure
of distributed consensus building. Thus the new algorithms
proposed here achieve ProCKSI’s similarity assessment quality
but with a fraction of the time required by it. Our results show
that the proposed distributed method can be used efficiently to
compare a) a particular protein against a very large protein
structures data set (target-against-all comparison), b) a particular
very large scale dataset against itself or against another very large
scale dataset (all-against-all comparison). We conclude the paper
by enumerating some of the outstanding challenges for real-time
MC-PSC.

Index Terms— Protein structure, Comparison, Alignment,
Multi-Criteria, Real-Time, Very Large Scale Data Sets, MPI,
GRID.

I. INTRODUCTION

THE comparison of protein structures is an essential activity
of biomedical research as it impacts on structure-based

drug design [1], protein structure prediction/modeling [2]–[4],
classification [5], [6], molecular docking algorithms [7] and
other structural bioinformatics applications. The specific ability
of protein 3D structure comparison to reveal more significant
evolutionary interrelations between proteins that share very little

Manuscript received June 27, 2009; revised XXX, 2010.
A.A Shah and N. Krasnogor are with the School of Com-

puter Science, University of Nottingham, UK, NG8 1BB. E-
mail:{psxaass,Natalio.Krasnogor}@nottingham.ac.uk

G. Folino is with the CNR-ICAR, Institute of High Performance Computing
and Networking, Italy. E-mail: folino@icar.cnr.it

common sequence (primary structure) has given rise to various
world wide structural genomic and proteomics initiatives such
as the Structural Genomics Consortium (SGC) [8], the Protein
Structure Initiative (PSI) [9] , and the Human Proteome Or-
ganization (HUPO) [10] amongst others. These initiatives are
targeted at lowering the cost and enhancing the efficiency for the
experimental determination or computational prediction of novel
protein 3D structures, leading for instance to the identification
of new structure-based medicine or therapeutics for treating
genetic and infectious diseases. As a consequence, there is a vast
growing number of protein 3D structures available in the Protein
Data Bank (PDB) [11] demanding more efficient and reliable
software analysis tools and services, especially for determining
their structural similarities and classifying them into families
according to similarity relationships.

Several methods and tools have been developed to investigate
the (dis)similarities among protein structures [12]. Not surpris-
ingly, there is no agreement on how to optimally define what
similarity/distance means as different definitions focus on differ-
ent biological criterion such as sequence or structural relatedness,
evolutionary relationships, chemical functions or biological roles
etc and these are highly dependent on the task at hand. This
observation calls for an explicit identification and understating
of the various stages involved in the assessment of proteins’
similarities.

As illustrated in Figure 1, the first four stages, which have
dominated the research in protein structure comparison so far, are:
similarity conception, model building, mathematical definition
and method implementation. Interestingly, the fifth stage, where
one would seek to leverage the strength of a variety of methods
by using appropriate consensus and ensemble mechanisms has
barely been investigated. One such approach has recently been
introduced by means of the Protein (Structure) Comparison,
Knowledge, Similarity and Information (ProCKSI) web server
[13]. Using a set of modern decision making techniques, ProCKSI
automatically integrates the operation of a number of the most
popular comparison methods (as listed in Table I) and provides
an integrated consensus that can be used to obtain more reliable
assessment of similarities for protein datasets. The consensus-
based results obtained from ProCKSI take advantage of the
’collective wisdom’ of all the individual methods (i.e, the biases
and variances of a given method are compensated by the other
methods biases and variances) and minimizes the chances of
falsely attributing similarity to (sets of) proteins. That is, false
positives are more frequent at individual method level because
usually most of globally different proteins still share some com-
mon substructures.

In this paper we describe a high-throughput implementation
of the entire protocol shown in Figure 1 whereby very large
protein structure dataset comparisons are done in parallel using
several methods and exploiting the intrinsic MIMD (Multiple

IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2010 2

Fig. 1
STAGES IN THE DERIVATION OF A PROTEIN’S CLASSIFICATION: (1)

DECIDE WHAT “SIMILARITY” MEANS, WHICH IS A DECLARATIVE AND

PROBLEM-DEPENDENT STEP. (2) HEURISTICALLY BUILD A MODEL OF

SIMILARITY BASED ON 1. THIS NEW SIMILARITY/DISTANCE CONCEPTION

WILL HAVE ITS OWN BIAS, VARIANCE AND OUTLIERS. (3) DECIDE

WHETHER THIS IDEALIZED MODEL WILL BE INSTANTIATED AS A

DISTANCE/SIMILARITY MEASURE OR METRIC. (4) ONE OR MORE

ALGORITHMS ARE IMPLEMENTED IN ORDER TO CALCULATE 3, WHICH

CAN BE SOLVED EXACTLY AND IN POLYNOMIAL TIME ONLY IN THE

SIMPLEST OF CASES. THE MORE INTERESTING SIMILARITY DEFINITIONS,
HOWEVER, GIVE RISE TO COMPLEX PROBLEMS REQUIRING

HEURISTICS/APPROXIMATE ALGORITHMS FOR THEIR SOLUTION. (5)
COMBINING MANY DIFFERENT METHODS WITH DIFFERENT VIEWS OF

SIMILARITY PRODUCES A MULTI-COMPETENCE PARETO-FRONT, FROM

WHICH A CONSENSUS PICTURE MIGHT BE DERIVED. IN TURN, THIS

ALLOWS THE STRUCTURAL BIOLOGIST TO (6) CLUSTER AND CLASSIFY

PROTEINS RELIABLY. FURTHERMORE, IN ORDER TO PROVIDE MOST

EFFICIENT (REAL-TIME) RESULTS BASED ON THE PHILOSOPHY OF (5),
THE NEED FOR THE DATA AND COMPUTATION TO BE DISTRIBUTED AND

EXECUTED IN A HIGH-THROUGHPUT ENVIRONMENT BECOMES

INDISPENSABLE.

Instructions Multiple Data) structure of the problem. Thus this
work takes a step forward towards the ultimate goal of real-time
multi-criteria similarity assessment of very large protein datasets.
Section II presents the review of the related literature, specially
focusing on the use of parallel and distributed computing for
protein sequence/structure alignment. A succinct description of
multi-criteria protein structure comparison is provided through
an overview of ProCKSI in section III. Also in this section
we provide an in-depth description of the computational chal-
lenge at the core of real-time MC-PSC. Section IV provides
the architectural design and analysis of our newly proposed
framework. Experimental results and their analysis are presented
and discussed in section V.

II. RELATED WORK

Recent advances in high-throughput techniques have led to
a data deluge in terms of the availability of biological and

biomedical data such as 1D sequences (flat files), 3D struc-
tures, microscopic images, videos and motifs, etc. [20]. This
has put considerable strain in the computational resources that
are routinely use to store, manage, process and analyze the vast
amount of data being generated. As to cope with the increase in
computational demands instigated by very large data sets, three
routes are usually followed [20]: (a) the development of new
algorithms or the redesign/modification of existing ones based on
faster heuristic techniques [21], [22]; (b) development of special
purpose ROM based hardware chips [23], [24]; and (c) the use of
parallel and distributed computing. Routes (a) and (b) can only
be applied in very specific cases as they require considerable in-
depth knowledge of a problem or substantial economic resources
respectively. The third alternative, the utilization of distributed
and parallel computation is becoming a more ubiquitous approach
as in some cases distributed/parallel solutions in one problem
can be reused (with slight modifications) in other problems.
Moreover, due to ongoing advances in processor and networking
technologies, the scope of parallel computing is also extending
from traditional supercomputers to massively parallel computers,
clusters of workstations (COW) and even crossing the boundaries
in the form of clusters of clusters i.e grid computing [25]. This
paradigm shift in the provision of parallel computing facilities
afford scalability at very low cost. Furthermore, in terms of code
maintenance and code portability, as compared to traditional super
computers, distributed computing fares better [26], [27]. Several
successful applications to nanobiosciences are discussed in [28]–
[34].

Notwithstanding the above successes, parallel and distributed
computing have no magic applicability formula and many dif-
ferent parallelization solutions might exists for a given problem.
Which one of these strategies would be the best one to use will
depend to a large extent not only on the specific problem structure
but also on factors such as available hardware, interconnection
types, security protocols and human resources. For example, the
BLAST (Basic Local Alignment Search Tool [35]) algorithm has
been parallelized/distributed through a variety of ways [28], [32],
[36]–[42]. Some of these approaches use combinations of MPI
(Message Passing Interface) [43], Grid and Public Computing
based architectures to distribute either the query sequence (which
could be as long as 80 billions of base pairs [44]) or the target
dataset/database(which could have up to 76 million records [44]
) or both. All these approaches use a simple master/slave task
scheduling strategy with coarse-grained level task distribution
for minimizing communication overheads [20]. Coarse-grained
approaches are not always suitable: given the variable length of
the sequences to be compared and the different processing power
of individual nodes in a heterogeneous cluster/grid environment,
deciding the actual unit of work to be assigned to a particular
node is a non-trivial matter for which efficient dynamic load-
balancing strategies are needed. Martino et al. [45], describe a
simple, inexpensive and effective strategy that divides the target
dataset/database in n buckets of fixed size (where n represents the
number of available processors). The load-balancing in this case
is achieved by ordering the sequences by their length (number of
bases or residues) and assigning them to each bucket in a way that
the longest sequence is assigned to the segment having smallest
sum of sequence lengths and continuing this process in a round-
robin fashion until all sequences are assigned to buckets. This
type of load-balancing strategy reduces the percentage of work

IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2010 3

TABLE I
BUILDING BLOCKS FOR MULTI-CRITERIA PROTEIN STRUCTURE COMPARISON. THE NAME AND REFERENCES FOR EACH OF THE METHOD IS SHOWN IN

COLUMN “METHOD”, FOLLOWED BY THE COLUMN “NOTION OF SIMILARITY” WHERE THE SPECIFIC NOTIONS THAT EACH METHOD USES TO DETERMINE

(DI)SIMILARITY ARE MENTIONED. COLUMNS “COMPUTATIONAL TECHNIQUES” AND “RESULTING MEASURES/METRICS” SUMMARIZE HOW EACH

SIMILARITY IS COMPUTED AND IN WHAT FORM IT IS RETURNED. THE LAST COLUMN GIVES AN INDICATION OF RELATIVE COMPUTATIONAL

REQUIREMENTS (TIME) FOR THE DIFFERENT METHODS. Key: AL = NUMBER OF ALIGNMENTS;OL = NUMBER OF OVERLAPS;Z = Z-SCORE; TMS =
TM-ALIGN SCORE; SN = NORMALIZED SCORE. ∗ THE AVERAGE CPU TIME FOR A SINGLE PAIR OF PROTEIN STRUCTURES ON A STANDARD P4 (1.86

GHZ, 2GB RAM) DUAL-CORE MACHINE. THUS THE TOTAL AVERAGE EXECUTION TIME TAKEN BY ALL SIX METHODS (WITH A TOTAL OF 15 DIFFERENT

SIMILARITY MEASURES/METRICS) FOR THE COMPARISON OF A SINGLE PAIR OF PROTEIN STRUCTURES IS 8.54 SECS PLUS SOME ADDITIONAL TIME FOR

PERFORMING I/O.

Method Notion of similarity Computational techniques Resulting measures/metrics Time∗ [sec]
DaliLite [14] intramolecular distances distance matrices, AL,Z, RMSD 3.33

combinatorial,
simulated annealing

MaxCMO [15] overlap between contact maps Variable Neighborhood Search (VNS) AL, OL 3.32
CE [16] inter-residue distances heuristics, AL, Z, RMSD 1.27

rigid body superposition dynamic programming
USM [17] Kolmogorov complexity compression utilities USM-distance 0.34

TM-align [18] inter-atomic distances rotation matrix, AL, RMSD,TMS 0.21
dynamic programming

FAST [19] inter-residue distances heuristics, RMSD, AL, SN 0.07
dynamic programming

load imbalance within homogeneous computing architectures but
does not take into account the heterogeneity of cluster and grid
environments. Trelles et al. [46] present another load-balancing
approach based on variable size of blocks (buckets). This strategy
initially distributes blocks with small sizes so as to reduce the
latency time for each node to receive its first unit of work. It then
increases the size of blocks (in the same way as classical Self
Guided Scheduling (SGS) reduces their size) until the first half
of dataset/database is processed and then again starts decreasing
their size. The smallest size of final blocks guarantees that all
n processors will terminate either at a same time (ideal case)
or with a maximum time difference that depends on the size of
the final block (i.e its execution time). This strategy has been
tested on a cluster of 15 nodes with significant enhancement in the
performance. Proteins 3D structure comparison algorithms (e.g.
those listed in Table I) present a similar structure to algorithms for
sequence comparison (e.g BLAST, FASTA and ClustalW etc) and
hence sometimes similar parallel/distributed strategies can be used
[20]. However, as compared to their sequence counterpart, there
are very few instances of the application of parallel computing
for 3D structure comparison methods. Ferrari et al. [47] describes
the distributed implementation of a geometric indexing based
PSC algorithm. In a first step this algorithm uses a pre-computed
hash table (that stores angular properties of secondary structure
elements (SSEs) for all 3D structures from PDB) as a quick
look-up for finding the hypothetical similar structures for a given
query. It then performs more refined matching of the query with
the subset of structures obtained from the look-up using atomic
representation of each structure. This algorithm was adapted to
grid environment by distributing the target dataset/database on
each node with a simple load balancing strategy that divides
the data into smaller subsets of fixed sizes and assigns them
to each node repeatedly. The test experiments were conducted
on a grid environment (Globus with MPICH) consisting of only
4 nodes (standard workstations) all at a single location. The
authors do not provide speedup information or detailed time
analysis for their distributed implementation but they claim to
have successfully compared a target protein structure (1TIM)

against a database of 19,500 proteins in a minimum time of
119 seconds. It should be noted that algorithms like this do
not perform an exhaustive pairwise comparison and hence one
can expect many false negatives. Park et al. describes another
distributed environment to speed-up the performance of a genetic
algorithm based PSC method named FROG (Fitted Rotation and
Orientation of protein structure by means of real-coded Genetic
algorithms) [48]. This algorithm uses the generation alternation
model with a simple master/slave task scheduling approach to
distribute the new parents to each slave repeatedly. The distributed
system uses Ninf-G based RPC on a Linux cluster of 16 nodes
and achieves a speed-up of 15.61. Other examples of distributed
protein structure comparison include the use of distributed and
semantics web technologies for PSC at individual method level
(e.g. [49] which is actually an extension of [47] as described
above), etc. None of these methods, however, deal with the
much more complex issue of efficient and scalable distributed
implementations for Multi-Criteria Protein Structure Comparison
methods. In what follows we discussed the computational issues
arising from MC-PSC by focusing on distributed strategies for
the ProCKSI server.

III. COMPUTATIONAL CHALLENGES IN MULTI-CRITERIA

PROTEIN STRUCTURE COMPARISON

ProCKSI is an online automated system that implements a
protocol for MC-PSC. In particular, it allows the user to submit
a set of protein structures and perform either all-against-all or
target-against-all protein comparisons with the methods listed in
Table I. ProCKSI combines the results of pairwise comparisons
delivered by the various available methods, normalizes them and
presents a consensus form of the results through an intuitive
web-based visual interface. Furthermore, it gathers information
about the proteins being compared through hyper links to external
sources of information e.g. Information Hyperlinked Over Protein
(IHOP) [50], Structural Classification of Proteins (SCOP) [51],
and Class Architecture Topology and Hierarchy (CATH) [52].
ProCKSI executes, on a given pair of proteins, several comparison
methods that, in turn, can result in one or more similarity

IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2010 4

measures. In order to be able to compute a consensus similarity
assessment, ProCKSI normalizes all of the resulting similarity
measures derived from the methods it uses to values in the [0, 1]

interval. The normalization process proceeds as follows. First,
the origin of the matrix containing the similarity/dissimilarity
values is shifted to zero by subtracting the matrix’ minimum value
from each matrix element. Then, the intermediate matrix is scaled
by dividing all matrix elements by the matrix’ maximum value.
Although this makes sure that the values of all elements are within
the correct range, it does not satisfy an additional requirement for
self-similarity (SS) values, namely, that self-similarity should be
0 for Distance Matrix (DM) and 1 for Similarity Matrix (SM).
Furthermore, similarity values also depend on the size (length) of
the proteins. Therefore, in order to normalize a similarity value
Sij resulting from the comparison of proteins Pi and Pj , it is
divided by the highest SS value of both proteins [53]:

Sij,norm =
Sij

max{Sii, Sjj} (1)

When applying Equation 1 to SS values Sii, one obtains
normalized values Sii,norm = 1 as max{Sii, Sii} = Sii. For the
purpose of clustering, the above similarity can be easily converted
to distances. As demonstrated in [13], and previously suggested
in [54] and [55], the ensemble and consensus based approach
adopted by ProCKSI yields more reliable results of biological
significance as compared to the results obtained with any single
structure comparison method developed so far. However, the
integration of multiple methods for protein structure comparison,
on the one hand, coupled with a rapidly growing number of
3D structures in the Protein Data Bank (PDB), on the other
hand, gives rise to a computational challenge that is far beyond
the capabilities of a single standard workstation or a group of
workstations, specially if one would like to perform a multi-
criteria comparison for very large datasets in real-time. That is,
as the number of protein structures being compared increases,
the corresponding number of pairwise comparison jobs, I/O files
and directories, computational time and memory required for
each comparison method and associated pre-processing (e.g. data
extraction and contact map preparation) and post-processing (e.g.
consensus generation, clustering and result visualization) methods
also increases. An estimate of some of these complexities is
presented in the following sections.

A. Job complexity

Job complexity for protein structure comparison depends on
the size (i.e number of structures) of the dataset/database in hand
as well as the mode of comparison. As of April 28, 2009 there
are 52,905 protein structures in the PDB and this number grows
steadily. If we compare a particular protein against all the proteins
in a given dataset (e.g. PDB), this is referred to as target-against-
all mode of comparison. While being the simplest mode, it is
usually used to compare a protein of unknown function but known
structure with those whose structures and functions are known.
The results of comparison would provide clues regarding the
function of the query protein. The number of pairwise comparison
jobs in this mode is directly related to the number of structures
in the target dataset. For example, given the current holdings of
PDB, there will be 52,905 comparison jobs while using target-
against-all mode of comparison. However, in the case of multi-
criteria comparison the actual number of jobs will be the number

of target structures × the number of methods being used for multi-
comparison.

Another mode of comparison is the one in which we compare
all the elements of a particular dataset among itself or with all
the elements of another dataset. This mode is referred as all-
against-all comparison and is mostly used to cluster/classify a
group of structures. The resulting clustering/classification is aimed
to reveal the functional and evolutionary similarities among the
proteins. The number of pairwise comparison jobs in this mode
is proportional to the square of the number of protein structures
involved in the comparison1 × the number of methods. For
example, the comparison jobs for current holdings of PDB using
all-against-all mode with only one method will be:

Nj = n2 = 529052 = 2, 798, 939, 025

Where, Nj represents the number of pairwise comparison jobs,
while n being the current number of protein structures available
in the PDB.

As mentioned above the actual number of jobs will be
2,798,939,025 × the number of methods being used. Therefore,
it will require an optimal way to distribute all these jobs in
the form of some smaller subsets (working packages) that could
be submitted for parallel/distributed execution. Needless to say,
this complexity calls for a high performance computing solution.
Please note that protein structure prediction methods, e.g. Robetta
[56] and I-TASSER [57], often sample thousands of “decoys”
that must be compared and clustered together at each iteration of
the algorithm as to obtain a centroid structure. Thus comparing
thousands or ten of thousands of protein structures is not limited
to assessing the PDB only but actually occurs as a sub-problem
in many other structural bioinformatics activities.

B. Time complexity

Different protein structure comparison algorithms have
different time complexities and run time profiles. Table I
provides an indicative comparison between the times taken
by the algorithms we used in our experiments for a typical
protein pair. Arguably, depending on the length of the members
of a protein pair, the times mentioned in the table would
change. However, these can be use to give a rough estimate2

of the run time profile that can be expected from these algorithms:

target-against-all: for a given protein structure compared
against the 52,905 structures in the PDB (assuming only one
chain per PDB file), a Multi-Criteria comparison with the
methods available in Table I consuming the time mentioned
in the fifth column, would take, on a P4 (1.86GHz, 2GB
RAM) dual-core workstation 5.26 days.
all-against-all: if one were to execute this type of compar-
ison for the entire PDB, this will result on 2,798,939,025
pairwise comparison jobs (assuming again one chain per
PDB file) and it would take about 765.58 years for all jobs
to finish on a single machine.

1Please note that some methods return different similarities for the com-
parison of Pi with Pj and the reverse comparison

2In later sections we provide a more detailed analysis of run times.

IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2010 5

C. Space complexity

Executing potentially millions of pairwise protein structure
comparison has strict requirements in terms of memory and
bandwidth allocation. MC-PSC jobs generate a very large number
of output data files that need to be parsed and summarized
in a way that enables the execution of the normalization and
consensus steps but also that falls within the constraints of the
available computational infrastructure. With the current number
of proteins structures in PDB, and the total number of comparison
measures/metrics for all six methods (Table I) there may be as
many data items in the resultant di(similarity) matrix as:

n2 × (Nmt + 2) =52,9052 × 17= 47,581,963,425.
Where n again represents the current number of protein

structures in PDB, Nmt represents the total number of mea-
sures/metrics (see Table I) and the additional 2 accounts for the
two protein IDs involved in each comparison. Using a minimum
of 5 digits/characters to hold each data item it may require
about 238GB to hold the matrix. Given the size of this matrix,
it becomes indispensable to compute and hold its values in a
distributed environment and use some parallel I/O techniques
to assemble each distributed portion directly at an appropriate
storage location.

The above back-of-the-envelope calculations point to the need
for a high-performance solution to the MC-PSC problem.

IV. A HIGH-THROUGHPUT DISTRIBUTED FRAMEWORK FOR

PROTEIN STRUCTURE MULTI-COMPARISON

In this section we present the algorithmic framework we use
to compute in a distributed environment solutions to the MC-
PSC problem. Figure 2 illustrates the overall architecture of
the proposed system. The top module performs the distribution
(through two different decomposition approaches as explained in
the following sections) of pairwise comparisons and allocates
them over the available nodes. Then, using the assigned (bag)
proteins, each node performs, in parallel and without the need for
synchronization, the pairwise comparisons required by its associ-
ated protein bag using each of the available PSC methods. That is,
each compute node computes a sub-matrix from the all-against-
all similarity matrices associated to each method. Afterwards, a
phase of normalization and estimation of missing/invalid values
is executed. This phase exchanges information among nodes, as it
needs the global minimum and maximum similarities for the nor-
malization as well as for the estimation of missing/invalid cells.
All the results concerning the current node are stored on a local
matrix. Note that no global and centralized matrix is maintained
by the system and that all the communication among the nodes
are performed using the MPI (Message Passing Interface) libraries
for a cluster of computers and using the MPICH-G2 libraries [58]
in the case of a grid-based implementation.

The pseudo-code shown in Algorithm 1 illustrates the main
steps performed by each node in the distributed framework.
Lines 1- 7 perform the pairwise comparison with all the methods
for all of the proteins assigned to a particular node. Because the
system does not maintain a global and centralized matrix, the
process of finding the extrema (maximum and minimum similarity
values needed for the subsequent step of normalization) takes
place in two steps. First, the local extrema are found (lines 8-
11) for all the methods. These are then shared among all the
nodes to find the global extrema (line 12). Once the extrema are
found, the next step (line 13) calls a subroutine that replaces all

the invalid and missing values with their corresponding estimated
values. Finally, line 14 calls the subroutine normalize diagonal

that performs the normalization of self-similarity values (across
the diagonal of the matrix) and line 15 calls the subroutine
normalize extrema that uses the previously calculated extrema
to perform the normalization of all the values as described in
section III.

Fig. 2
SOFTWARE ARCHITECTURE OF THE DISTRIBUTED FRAMEWORK.

Algorithm 1 Pseudo-code executed from each node x concerning
the multi-comparison part and the normalization/replacing invalid
missing values part. Line 1 iterates for each method, with m

representing the total number of methods.
1: for all method k such that 1 ≤ k ≤ m do
2: for all protein i in row (x) do
3: for all protein j in column (x) do
4: compute method k on the couple of proteins i and j

{on node x}
5: end for
6: end for
7: end for
8: for all k such that 1 ≤ k ≤ m do
9: find local min

10: find local max
11: end for
12: exchange and find all global min and max {MPI Allreduce

routine}
13: replace invalid missing values
14: normalize diagonal
15: normalize extrema

A. Decomposition Strategies

The efficiency of the distributed framework strongly depends
on the way in which proteins are assigned to compute nodes.

A good load balancing strategy should considerably reduce the
execution time and the memory necessary to store the main matrix
and other data structures necessary to the overall computation of
MC-PSC.

Consider a set of resources (nodes of the clusters or machines
on the grid) N1, N2, . . . , Nn and the main matrix (proteins ×

IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2010 6

proteins×methods) storing the result of the computation and of
the normalization (and estimating invalid/missing values) phases.
Let p be the total number of proteins and m the total number
of methods computed. Note that, indeed, M indicates the total
number of indices computed by the different m methods; in fact,
M =

Pm
k=1 Mk, where Mk is the number of indices computed

by the method k (see Table II for complete nomenclature).
In order to distribute the overall M among the nodes, there

may be as many possible partitioning schemes as:
1) Comparison of one pair of proteins with one method. This

will create p× p×m jobs
2) Comparison of one pair of proteins with all methods. This

will create p× p jobs
3) Comparison of all pairs of proteins with one method. This

will create m jobs
4) Comparison of a subset of pairs of proteins with a set/subset

of methods. This will create an optimal number of jobs
based on the availability of nodes as well as the number of
proteins in a given dataset.

Partitioning 1 and 2 will be too fine-grained, whereas 3 will
be too course-grained to be considered for a large cluster/grid
environment. Partitioning 4 on the other hand could be devised
in an intelligent way to achieve better load-balancing.

We investigate the 4th partitioning scheme by applying two
different approaches. The first decomposition adopted is shown
in figure 3. The main matrix that stores the results is decom-
posed among the available nodes along the two proteins axis,
so each comparison among two proteins for all the methods
is performed on the same node, better balancing the different
methods. This decomposition is the more efficient in terms of
inter-jobs communication overhead, as it minimizes the number
of information exchanges amongst compute nodes. Furthermore,
the matrix is perfectly partitioned as each node is responsible for
the computation and storage of same number of proteins p2m

n . In
the next subsection these results will be analyzed in more detail.
However, initial experiments suggested that execution times for
different couples of proteins can largely fluctuate (see table IV),
making the load among the different nodes not really balanced.

A second strategy is to balance the total execution time per
compute node rather than the number of pairwise comparisons.
Thus, this strategy takes into account the inhomogeneities in the
size of the proteins being compared and is shown in figure 4. In
order to set up a bag of proteins having the same overall number
of residues on each node, the following largely used strategy was
followed. Consider the case of proteins to be assigned to the

√
n

row processors (but the procedure is analogous for the column
processors). First of all, proteins are sorted by the number of
residues. Then, they are assigned, from the longest to the shortest
one, to the node having the current lowest sum of residues. This
procedure is not really time consuming, as it requires p log p

for sorting the proteins and p(
√

n)2 = pn for assigning them
to the correct node. The same distribution obtained for the row
is also chosen for the column, so that the order of rows is not
different of that of the columns and the operation of normalization
and removing invalid/missing values could be performed without
other overheads.

Each of the two proposed load balancing approaches result in
a different CPU and memory usage. In what follows we analyze
the benefits and drawbacks behind each of them. Unless otherwise
stated, a given analysis/argument applies to both of the strategies.

Henceforth, the first decomposition will be referred to as even and
the second one as uneven.

Fig. 3
EVEN DISTRIBUTION OF THE PROBLEM SPACE

(proteins× proteins×methods). EACH NODE IS RESPONSIBLE FOR

THE SAME COMPUTATION, I.E. SAME PORTION OF THE MATRIX)

.

Fig. 4
UNEVEN DISTRIBUTION OF THE PROBLEM SPACE

(proteins× proteins×methods). NOTE THAT THE DIFFERENT SIZES

TAKE DIFFERENT PROTEIN SIZES INTO ACCOUNT (E.G. ONE NODE ONLY

FOR A FEW BIG PROTEINS, WHICH TAKE QUITE LONG TO CALCULATE;
AND ONE NODE FOR MANY SMALLER PROTEINS, WHICH ARE QUICKER TO

CALCULATE).

B. Cost Analysis

Space analysis

IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2010 7

In what follows we do not take into account transient memory
requirements by the different methods (e.g. internal data struc-
tures) as these have, on the one hand, been already analyzed in the
paper where each method was originally introduced and, on the
other hand, these transient space requirements are released as soon
as a particular pairwise comparison is done. The nomenclature
used in our analysis is summarized in Table II.

The entire matrix, storing the comparison/normalization results,
is decomposed along each of the two proteins axis among n nodes.
So, in the case of even distribution, each node handles a matrix
of size p2m

n and of size = max(row protx × col protx)×m for
the uneven distribution, where p is the number of proteins, n the
number of nodes, m the total number of computed methods and
row protx and col prot x are respectively the proteins stored on
the row and on the column of the matrix assigned to the node
x. In this case the space → p2m

n if max(row protx → p
n and

max(col protx → p
n , i.e. almost the same number of proteins is

stored on each node.
The space necessary to store the proteins is p2mSp

n for even
distribution and max(row protx × col protx)mSp for uneven
distribution, where Sp is the average size of proteins. This is the
worst case as in many cases row proteins and column proteins
are overlapped.

Obviously, in the case of the uneven distribution, the memory
space is balanced only if the number of proteins stored on a node
are not much different from those stored in the others.

Time analysis
Let Tm be the average execution time of all the methods over

all the couple of proteins and Tmx be average execution time of
all the methods over all protein pairs stored on node x.

So, only for the computation part of the algorithm, in a single
node execution, the total execution time will be Ts = p2×Tm. As
for the distributed case, formulation is not so simple as, depending
on the distribution of the proteins, average execution times could
be really different from node to node. In such case, in the even
distribution the parallel execution time will be Tp = p2Tmx

n and
Tp = max(row protx × col protx × Tmx) ≤ max(row protx ×
col protx)×max(Tmx) for the uneven distribution. So, one has
to balance this product as to obtain a fair computation; in the
case of even distribution only if Tmx → Tm for each node, a
balanced load is achieved.

Communication overhead
In addition to considering different execution times over dif-

ferent nodes, communication overheads must also be taken into
consideration. This overhead happens in the first phase, when pro-
teins are distributed over the nodes (using MPI Bcast routine) and
in the latter phase, when normalization and invalid/missing value
replacement must be conducted (using MPI Allreduce routine).

Moving the proteins to different nodes does not require an
excessive time in comparison with the large computation time
of the computing phase. Naturally, even decomposition needs
slightly less overhead than uneven one as almost the same number
of protein must be send to each node. The amount of data
exchanged is, as discussed before, p2Sp

n for even distribution and
max(row protx × col protx)Sp for uneven.

As for the normalization phase, we need to compute the global
minimum and maximum for all the methods for a total of 2 m

values exchanged. For the correction of invalid or missing values
we need the minimum or maximum for each row and column and
method in which we got an invalid value. Thus, in the worst case,

we have to exchange 2n2m, but typically invalid values are found
only for a few methods and not for many cells.

Although the same amount of information is exchanged by
the two decomposition strategies, the communication overhead
is higher for the uneven strategy. This is mainly due to the
worse efficiency for collective communication in an environment
in which there are different number of rows and columns for each
processor.

C. Discussion

The two decomposition strategies adopted present different
pros and cons. Although the even decomposition better utilizes
memory both in terms of cells of the matrix (p2m

n) and pro-
teins (p2Sp

n), it does not balance well the execution time on
the different nodes, especially if, as usual, proteins have very
different structures (or number of residues). On the contrary,
the uneven distribution, paying the cost of a larger memory
requirements (max(row protx×col protx)×m for the matrix and
max(row protx×col protx)Sp for proteins), is the only approach
usable for obtaining appreciable reduction in execution times for
small-medium and not well balanced datasets of proteins.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

Different experiments were conducted to validate the quality of
the two decomposition strategies. Two metrics are usually used
for testing the computational scalability of a parallel/distributed
system: the speedup S and the efficiency E. The ”speedup” is a
measure that indicates the improvement in the execution time of a
parallel algorithm as compared to its sequential counterpart where
as the ”efficiency” indicates the utilization of each processor
in a parallel system. Mathematical representation and further
description of these terms is provided in the appendix.

A. Datasets and Test Suite

All the experiments were performed on a Linux cluster, named
spaci and placed at ICAR-CNR institute in Italy, with 64 dual-
processors Itanium2 1.4GHz nodes each having 4GB of main
memory and being connected by a Qsnet high performance
network.

In our experiments, we used the first chain of the first model
both for the Rost and Sander dataset (RS119) and for the Chew-
Kedem (CK34) data set (see Table III for the characteristics of
these datasets). As an example of a large dataset, we used the one
proposed by Kinjo et al. [59]. This dataset has been prepared by
using PDB-REPRDB [59] algorithm to select 1012 non-redundant
protein chains. The length of each chain in this dataset is greater
than 50 with a sequence identity less than 30%. Furthermore, the
dataset does not contain any chain with non-standard residues or
chain breaks and all of its chains have resolution better than 2
Å and R factor better than 20%.

B. Scalability of the Even Decomposition

To evaluate the quality of the even decomposition, the pre-
viously introduced metrics of scalability and efficiency were
used, together with the execution time on different numbers of
processors. The speed-up values obtained for the two medium
datasets CK34 and RS119 are shown in figure 5.

IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2010 8

Description
p Number of proteins
n Number of nodes (processors)
m Number of methods used (i.e. MaxCMO, FAST, etc..)
Mk Number of indices computed by the method k
M Total number of indices computed by all the methods
row protx Number of row proteins present on node x
col protx Number of col proteins present on node x
Evalx Number of evaluation conducted on node x (row protx × col protx)
Sp average size of proteins
Tmx average execution time of all the methods over all the couples of proteins stored on the node x
Tm average execution time of all the methods over all the couples of proteins

TABLE II
SYMBOLS USED FOR THE ANALYSIS.

Dataset # Chains # Comparisons # Residues
per Datasets per Datasets per Datasets

CK34 [60] 34 1, 156 6, 102
RS119 [61] 119 14, 161 23, 053

Kinjo et al. [59] 1012 1, 024, 144 252, 569

TABLE III
OVERVIEW OF THE DATASETS USED IN THE EXPERIMENTS. THE HASH

SYMBOL (#) IS AN ABBREVIATION FOR Number of

0 4 16 25 64
0
4
8

16

25
30

64

Number of processors

S
pe

ed
−

up

Ideal
CK34
RS119

Fig. 5
SPEEDUP OF THE EVEN DECOMPOSITION USING THE CK34 AND RS119

DATASETS ON spaci CLUSTER.

0 4 16 25 64
0
4

16

25
30

40

64

Number of processors

S
pe

ed
−

up

Ideal
CK34
RS119

Fig. 6
SPEEDUP OF THE UNEVEN DECOMPOSITION USING THE CK34 AND

RS119 DATASETS ON spaci CLUSTER.

For both datasets, the speed-up remains good using up to 16
processors, but using more processors does not help to speed
up the total execution time to the same degree. This is due
to the structural differences of the proteins, as each protein is
composed by a different number of residues. Indeed, in spite of
having the same number of proteins on each node, some proteins
could have a large number of residues on a node and a few on
another one. This consideration is confirmed by the large variance
in the execution times of the different methods (Table IV). As
for the execution time, for the RS119 and the CK34 dataset,
the entire execution time was reduced respectively from about
6 days and 6.2 hours, using the sequential implementation on
one machine, to 4.8 hours and 14.15 minutes on 64 processors.
This means that the new distributed algorithm performs 30 times
(with RS119 dataset) and 26 times (with CK34 dataset) faster
as compared to its current sequential counterpart. However, these
improvements are still far from the ideal improvement of 64 times
and hence on 64 processors, the efficiency degrades to the values
of 46% and 41% respectively for RS119 and CK34. The following
sections provide analysis of this effect in detail and introduce
another approach that further enhances the speedup as well as
the efficiency of the system.

C. Empirical Analysis of the Load Balancing Factors

It is important to understand whether the execution times of the
different methods described in the previous sections depends on
the number of proteins, on the numbers of residues, or on both of
them. To this end we randomly divided the proteins composing
the two datasets CK34 and RS119 among 64 nodes (a 8x8 grid of
processors) and we run all the available methods and measured
the execution time, the overall number of residues and of proteins
present on each node. This procedure was repeated for 20 times
for a total of 1280 different measures of time.

Then, we plotted the execution time vs the number of proteins
(figures 7 a and b) and the execution time vs the overall number
of residues (figures 8 a and b). Observing the figures, it is clear
that the execution time depends mainly on the overall number
of residues present on a node, i.e. the dependence of time as
a function of residues number is nearly linear, while it does not
exhibit a linear dependence on the number of proteins. The largely
used Pearson product-moment correlation coefficient (PMCC)
was computed to better assess the dependency between time and
residues versus the time and proteins. In the first case, we obtained
a coefficient of 0.992 and 0.995 respectively for the CK34 and

IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2010 9

TABLE IV
TOTAL NUMBER OF RESIDUES AND AVERAGE NUMBER OF CHAINS PER DATASET AND AVERAGE EXECUTION TIMES AND STANDARD

DEVIATION (MINUTES) OF THE DIFFERENT METHODS FOR THE CK34 AND RS119 DATASETS AVERAGED OVER 60 TRIES.

Dataset # Res. per Datasets # Res. per Chain USM FAST TM-ALign Dali CE MaxCMO
CK34 6102 179 0.52 ± 0.28 0.14 ± 0.07 0.28 ± 0.11 3.49 ± 1.53 3.20 ± 0.66 0.99 ± 0.34
RS119 23053 197 3.68 ± 0.31 2.16 ± 1.05 5.78 ± 2.86 44.59 ± 20.51 41.05 ± 20.41 20.13 ± 9.69

0 20 40 60 80 100
0

500

1000

1500

2000

Number of proteins

T
ot

al
 E

xe
cu

tio
n

T
im

e

ck34

(a)

0 200 400 600 800
0

0.5

1

1.5

2
x 10

4

Number of proteins

T
ot

al
 E

xe
cu

tio
n

T
im

e

rs119

(b)

Fig. 7
EXECUTION TIME VS NUMBER OF PROTEINS PRESENT ON THE NODE FOR THE (A) CK34 AND (B) RS119 DATASET

RS119 dataset, while in the latter case we obtained only 0.582

and 0.585 for the same two datasets.
Further analysis aimed to explore whether this linear depen-

dence was influenced by one or more slowest methods or is
verified for all the methods. Figures 9 show the execution time
vs the number of residues for each method for CK34 (a and
b) and RS119 (c and d). Although FAST, USM and MacCMO
perform faster as compared to Dali, CE, TM-Align, however the
dependency is quite evident for each of them. Also considering
PMCCs, they are always higher than 0.95 for the residue case
and lower than 0.60 for the protein case. The only exception
is the USM method that obtained a value of 0.914 and 0.888

(respectively for CH34 and RS119) for residues and a value of
0.667 and 0.6958 for the protein case.

D. Scalability of the Uneven Decomposition

From the previous section, it is clear that the execution time
strongly depends on the number of residues per node. Thus,
scalability experiments for the same dataset as the even dis-
tribution were also conducted with uneven decomposition and
results are reported in figure 6. For the RS119 (CK34) dataset,
the entire execution time was reduced from about 6 days (6.2

hours), using the sequential implementation on one machine, to
3.4 hours (11.65 min.) on 64 processors. This shows that using
the uneven strategy, the proposed algorithm performs 42 times
(with RS119) and 32 times (with CK34) faster than its current
sequential counterpart and hence much closer to ideal boost up
of 64 times. In comparison with the even strategy, the uneven
strategy obtains an improvement of about 29% for the RS119
dataset and of about 18% for the CK32 dataset. Furthermore, on
64 processors, the efficiency is maintained at a quite good value
of 64% for RS119. For the CHK34, we obtained a value of 50%

that is not a bad result, given the small grain of the dataset. The
significant difference of speedup and efficiency in terms of the
RS119 and CK34 datasets indicates that the larger the dataset

the more faster and efficient the proposed algorithm becomes as
compared to its sequential implementation. As to this illustration
we describe another experiment with even larger dataset in the
next section.

E. A further experiment on a large dataset

The last experiment was performed using the the uneven
strategy running on 4, 16, 25 and 64 processors applied to the
Kinjo dataset, comprising of 1012 non-redundant protein chains.
Using this dataset, the algorithm performed about 1 million of
comparisons for all the methods.

As the execution time on a single processor is extremely large,
this case was not considered, instead, scalability was measured
based on an estimated base line on 4 processors running the faster
of all the methods, namely, the FAST algorithm. For reference
note that FAST takes approximately 11 days to execute on a single
processor for such a large number of proteins.

4 16 25 64

4

16

25
30

40

50

64

Number of processors

S
pe

ed
−

up

Ideal
Kinjo

Fig. 10
SPEEDUP OF THE UNEVEN DECOMPOSITION USING THE KINJO DATASET

ON spaci CLUSTER.

IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2010 10

0 0.5 1 1.5 2 2.5

x 10
6

0

500

1000

1500

2000

Number of residues

T
ot

al
 E

xe
cu

tio
n

T
im

e

ck34

(a)

0 0.5 1 1.5 2 2.5

x 10
7

0

0.5

1

1.5

2
x 10

4

Number of residues

T
ot

al
 E

xe
cu

tio
n

T
im

e

rs119

(b)

Fig. 8
EXECUTION TIME VS NUMBER OF RESIDUES PRESENT ON THE NODE FOR THE (A) CK34 AND (B) RS119 DATASET

0 0.5 1 1.5 2 2.5

x 10
6

0

20

40

60

80

100

Number of residues

E
xe

cu
tio

n
T

im
e

ck34

USM
FAST
TM−ALign

(a)

0 0.5 1 1.5 2 2.5

x 10
6

0

200

400

600

800

1000

Number of residues

E
xe

cu
tio

n
T

im
e

ck34

Dali
CE
MaxCMO

(b)

0 0.5 1 1.5 2 2.5

x 10
7

0

200

400

600

800

1000

1200

Number of residues

E
xe

cu
tio

n
T

im
e

rs119

USM
FAST
TM−ALign

(c)

0 0.5 1 1.5 2 2.5

x 10
7

0

1000

2000

3000

4000

5000

6000

7000

8000

Number of residues

E
xe

cu
tio

n
T

im
e

rs119

Dali
CE
MaxCMO

(d)

Fig. 9
EXECUTION TIME VS NUMBER OF RESIDUES PRESENT ON THE NODE FOR THE DIFFERENT METHODS FOR THE (A) CK34 AND (B) RS119 DATASET

The execution time of the algorithm applied to this huge dataset
was reduced from 152 days on 4 processors, to 39.7 days on
16 and finally to 10.7 days on 64 processors. Obviously the
scalability obtained is very close to the ideal case, as shown in
figure 10. In fact, on 64 processor, respectively a scalability value
of 57 and an efficiency value of 89% were measured. This shows
that with the larger dataset (consisting of 1012 protein structures)
the proposed algorithm performs 57 times faster as compared to
its sequential implementation.

VI. CONCLUSIONS

A high-throughput/grid-aware distributed Protein structure
comparison framework for very large datasets is proposed, based
on an innovative distributed algorithm running both in a cluster
and grid environment. This framework is able to perform structure
comparison using all or a selection of the available methods. The
design of this algorithm have been analyzed in terms of space,
time, and communication overhead. Based on this analysis two

IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2010 11

different load balancing approaches have been used to improve
the overall performance: even and uneven strategies. The former
permits to obtain the best distribution in terms of memory, while
the latter performs better in terms of execution time and scalability
on cluster computers. Experiments conducted on medium and
large real datasets prove that the algorithm permits to reduce
execution time (i.e. for the RS119 dataset it was reduced from
6 days on a single processor to about 5 hours on 64 processors)
and to cope with problems otherwise not tractable on a single
machine as the Kinjo dataset, which took about 11 days on a
64-processors cluster.

In the future, we intend to investigate in more depth the use
of grid computing environments in order to cope with very large
proteomics datasets.

APPENDIX

Speedup:

The speedup of a parallel algorithm is the ratio between the
time taken by the best sequential implementation of an application
measured on one processor Ts and the execution time taken by
the same application Tp running on p processors.

S =
Ts

Tp
(2)

The optimal case is given by a linear speedup, i.e. If we run
the same application on p processors, then we can expect at best
a reduction in time of p, and therefore that the speedup will be
at most p. In fact, this is only a theoretical condition because
the parallel algorithm introduces an overhead, mainly due to the
communication times among different processors. If the problem
is not sufficiently complex, and the communication times are not
negligible with respect to computational time, then the speedup
might be noticeably smaller.

Efficiency:

Efficiency is given by the ratio between the speedup S and the
number of processors p:

E =
S

p
(3)

and it represents an index of the fraction of time usefully spent
by each processor. In this case, the highest value of efficiency
(equals to 1) is attained when all the processors are utilized to
the maximum (communication times and other overheads equal
to zero).

ACKNOWLEDGMENTS

The authors would like to thank the ICAR-CNR institute and
particularly Gennaro Oliva for providing assistance and useful
information in using the SPACI cluster.

REFERENCES

[1] T.-S. Mayuko, T. Daisuke, C. Chieko, T. Hirokazu, and U. Hideaki,
“Protein structure prediction in structure based drug design,” Current
Medicinal Chemistry, vol. 11, pp. 551–558, 2004.

[2] A. Zemla, C. Venclovas, J. Moult, and K. Fidelis, “Processing and
analysis of casp3 protein structure predictions,” Proteins Struct Funct
Genet, vol. Suppl 3, pp. 22–29, 1999.

[3] D. Kihara, Y. Zhang, H. Lu, A. Kolinski, and J. Skolnick, “Ab initio
protein structure prediction on a genomic scale: Application to the
mycoplasma genitalium genome,” PNAS, vol. 99, pp. 5993–5998, 2002.

[4] Y. Zhang and J. Skolnick, “Automated structure prediction of weakly
homologous proteins on a genomic scale,” PNAS, vol. 101, p. 75947599,
2004.

[5] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, “Scop:
a structural classification of proteins database for the investigation of
sequences and structures,” J Mol Biol, vol. 247, pp. 536–540, 1995.

[6] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells,
and J. M. Thornton, “Cath - a hierarchic classification of protein domain
structures,” Structure, vol. 5, pp. 1093–1108, 1997.

[7] S.-Y. Huang and X. Zou, “Efficient molecular docking of nmr structures:
Application to hiv-1 protease,” Protein Sci., vol. 16, pp. 43–51, 2007.

[8] A. Williamson, “Creating a structural genomics consortium,” Nat Struct
Biol, vol. 7, 2000.

[9] B. Matthews, “Protein structure initiative: getting into gear,” Nat Struct
Mol Biol, vol. 14, pp. 459–60, 2007.

[10] Editorial, “Proteomics’ new order,” Nature, vol. 437, pp. 169–70, 2005.
[11] H. Berman, K. Henrick, and H. Nakamura, “Announcing the worldwide

protein data bank,” Nat Struct Biol, vol. 10, p. 980, 2003.
[12] R. Kolodny, P. Koehl, and M. Levitt, “Comprehensive evaluation of

protein structure alignment methods: Scoreing by geometric measures,”
J Mol Biol, vol. 346, pp. 1173–1188, 2005.

[13] D. Barthel, J. Hirst, J. Blazewicz, E. K. Burke, and N. Krasnogor, “The
ProCKSI server: a decision support system for protein (structure) com-
parison, knowledge, similarity and information,” BMC Bioinformatics,
vol. 8, p. 416, 2007.

[14] L. Holm and J. Park, “Dalilite workbench for protein structure compar-
ison,” Bioinformatics, vol. 16, pp. 566–567, 2000.

[15] D. A. Pelta, J. R. Gonzalez, and M. V. M., “A simple and fast heuristic
for protein structure comparison,” BMC Bioinformatics, vol. 9, p. 161,
2008.

[16] I. Shindyalov and P. Bourne, “Protein structure alignment by incremental
combinatorial extension (ce) of the optimal path,” Protein Eng, vol. 11,
pp. 739–747, 1998.

[17] N. Krasnogor and D. A. Pelta, “Measuring the similarity of protein
structures by means of the universal similarity metric,” Bioinformatics,
vol. 20, pp. 1015–1021, 2004.

[18] Y. Zhang and J. Skolnick, “Tm-align: A protein structure alignment
algorithm based on tm-score,” Nucleic Acids Res, vol. 33, pp. 2302–
2309, 2005.

[19] J. Zhu and Z. Weng, “Fast: A novel protein structure alignment algo-
rithm,” Proteins Struct Funct Bioinf, vol. 58, pp. 618–627, 2005.

[20] T. O, “On the parallelisation of bioinformatics applications,” Briefings
in Bioinformatics, vol. 2, pp. 181–194, 2001.

[21] A. SF and S. A. Madden TL, “Gapped blast and psi-blast: A new
generation of protein db search programs,” Nucleic Acids Res., vol. 25,
pp. 3389–3402, 1997.

[22] P. W. R. and L. D. J., “Improved tools for biological sequence compar-
ison,” Proc. Natl Acad. Sci., vol. 85, pp. 2444–2448, 1988.

[23] “The bio-accelerator.” [Online]. Available: http://sgbcd//weizmann.ac.il/
[24] R. K. Singh, W. D. Dettlo, V. L. Chi, D. L. Homan, S. G. Tell,

C. T. White, S. F. Altschul, and B. W. Erickson, “Bioscan: A dynami-
cally recongurable systolic array for biosequence analysis,” in Proc. of
CERCS96, National Science Foundation, 1996.

[25] I. Foster, “Globus toolkit version 4: Software for service-oriented
systems,” in IFIP International Conference on Network and Parallel
Computing, ser. LNCS 3779, 2005, pp. 2–13.

[26] A. Shah, D. Barthel1, P. Lukasiak, J. Blacewicz, and N. Krasnogor,
“Web and grid technologies in bioinformatics, computational biology
and systems biology: A review,” Current Bioinformatics, vol. 3, no. 1,
pp. 10–31, 2008.

[27] A. Shah, D. Barthel, and N. Krasnogor, “Grid and distributed public
computing schemes for structural proteomics,” in Frontiers of High
Performance Computing and Networking ISPA 2007 Workshops, ser.
LNCS 4743. Berlin:Springer, 2007, pp. 424–434.

[28] S. Pellicer, G. Chen, K. C. C. Chan, and Y. Pan, “Distributed sequence
alignment applications for the public computing architecture,” IEEE
TRANSACTIONS ON NANOBIOSCIENCE, vol. 7, pp. 35–43, 2008.

[29] W.-L. Chang, “Fast parallel dna-based algorithms for molecular
computation: The set-partition problem,” IEEE TRANSACTIONS ON
NANOBIOSCIENCE, vol. 6, pp. 346–353, 2007.

[30] I. Merelli, G. Morra, and L. Milanesi, “Evaluation of a grid based molec-
ular dynamics approach for polypeptide simulations,” IEEE TRANSAC-
TIONS ON NANOBIOSCIENCE, vol. 6, pp. 229–234, 2007.

[31] M. Mirto, M. Cafaro, S. L. Fiore, D. Tartarini, and G. Aloisio, “Eval-
uation of a grid based molecular dynamics approach for polypeptide
simulations,” IEEE TRANSACTIONS ON NANOBIOSCIENCE, vol. 6,
pp. 124–130, 2007.

IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. X, NO. X, MONTH 2010 12

[32] A. Arbona, S. Benkner, G. Engelbrecht, J. Fingberg, M. Hofmann,
K. Kumpf, G. Lonsdale, and A. Woehrer, “A service-oriented grid
infrastructure for biomedical data and compute services,” IEEE TRANS-
ACTIONS ON NANOBIOSCIENCE, vol. 6, pp. 136–141, 2007.

[33] M. Cannataro, A. Barla, R. Flor, G. Jurman, S. Merler, S. Paoli,
G. Tradigo, P. Veltri, and C. Furlanello, “A grid environment for
high-throughput proteomics,” IEEE TRANSACTIONS ON NANOBIO-
SCIENCE, vol. 6, pp. 117–123, 2007.

[34] A. Boccia, G. Busiello, L. Milanesi, and G. Paolella, “A fast job
scheduling system for a wide range of bioinformatic applications,” IEEE
TRANSACTIONS ON NANOBIOSCIENCE, vol. 6, pp. 149–154, 2007.

[35] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic
local alignment search tool,” Journal of Molecular Biology, vol. 215,
p. 403410, 1990.

[36] H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, and W. chun Feng,
“Massively parallel genomic sequence search on the blue gene/p ar-
chitecture,” in SC ’08: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing. Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–11.

[37] A. J., W. chun Feng, and T. E., “A pluggable framework for parallel
pairwise sequence search,” in 29th Annual International Conference of
the IEEE, 2007, pp. 127–130.

[38] O. C. and N. J., “Scalablast: A scalable implementation of blast for high-
performance data-intensive bioinformatics analysis,” IEEE Transactions
on Parallel and Distributed Systems, vol. 17, pp. 740– 749, 2006.

[39] A. Krishnan, “Gridblast: a globus-based high-throughput implementation
of blast in a grid computing framework,” Concurrency and Computation:
Practice and Experience, vol. 17, pp. 1607–1623, 2005.

[40] A. E. Darling, L. Carey, and W. chun Feng, “The design, implementation,
and evaluation of mpiblast,” in In Proceedings of ClusterWorld 2003,
2003.

[41] R. L. D. C. Costa and S. Lifschitz, “Database allocation strategies for
parallel blast evaluation on clusters,” Distrib. Parallel Databases, vol. 13,
no. 1, pp. 99–127, 2003.

[42] R. Braun, K. Pedretti, T. Casavant, T. Scheetz, C. Birkett, and C. Roberts,
“Parallelization of local blast service on workstation clusters,” Future
Generation Computer Systems, vol. 17, p. 745754, 2001.

[43] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-Performance,
Portable Implementation of the MPI Message Passing Interface Stan-
dard,” Parallel Computing, vol. 22, no. 6, pp. 789–828, Sep. 1996.

[44] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L.
Wheeler, “Genbank,” Nucleic Acids Res., vol. 17, p. D25D30, 2008.

[45] R. Martino, C. Johnson, E. Suh, B. Trus, and T. Yap, “Parallel computing
in biomedical research,” Science, vol. 265, pp. 902–908, 1994.

[46] O. Trelles-Salazar, E. Zapata, and J. Carazo, “On an efficient paralleliza-
tion of exhaustive sequence comparison algorithms on message passing
architectures,” Bioinformatics, vol. 10, pp. 509–511, 1994.

[47] C. Ferrari, C. Guerra, and G. Zanottib, “A grid-aware approach to protein
structure comparison,” J. Parallel Distrib. Comput., vol. 63, pp. 728–737,
2003.

[48] S.-J. Park and M. Yamamura, “Frog (fitted rotation and orientation of
protein structure by means of real-coded genetic algorithm) : Asyn-
chronous parallelizing for protein structure-based comparison on the
basis of geometrical similarity,” Genome Informatics, vol. 13, pp. 344–
345, 2002.

[49] M. Cannataro, M. Comin, C. Ferrari, C. Guerra, A. Guzzo, and P. Veltri,
“Modeling a protein structure comparison application on the grid using
proteus,” in Scientific Applications of Grid computing (SAG2004), ser.
LNCS 3458. Berlin:Springer, 2004, pp. 75–85.

[50] “ihop: Information hyperlinked over proteins.” [Online]. Available:
http://www.ihop-net.org

[51] “Scop: Structural classification of proteins.” [Online]. Available:
http://scop.mrc-lmb.cam.ac.uk/scop

[52] F. M. G. Pearl, C. F. Bennett, J. E. Bray, A. P. Harrison, N. Martin,
A. Shepherd, I. Sillitoe, J. Thornton, and C. A. Orengo, “The cath
database: an extended protein family resource for structural and func-
tional genomics,” Nucleic Acids Res, vol. 31, pp. 452–455, 2003.

[53] D. A. Pelta, N. Krasnogor, C. Bousono-Calzon, J. L. Verdagay, J. D.
Hirst, and E. Burke, “A fuzzy sets based generalization of contact maps
for the overlap of protein structures,” Fuzzy Sets and Systems, vol. 152,
pp. 102–123, 2005.

[54] O. Camoglu, T. Can, and A. Singh, “Integrating multi-attribute similarity
networks for robust representation of the protein space,” Bioinformatics,
vol. 22, pp. 1585–1592, 2006.

[55] F. V and S. S, “Heterogeneous data integration with the consensus
clustering formalism,” in 1st International Workshop on Data Integration
in the Life Science (DILS), ser. LNCS 2994. Berlin:Springer, 2004, pp.
110–123.

[56] C. A. Rohl, C. E. M. Strauss, K. M. S. Misura, and D. Baker, “Protein
Structure Prediction Using Rosetta,” in Numerical Computer Methods,
Part D, ser. Methods in Enzymology, L. Brand and M. L. Johnson, Eds.
Academic Press, Jan. 2004, vol. Volume 383, pp. 66–93.

[57] S. Wu, J. Skolnick, and Y. Zhang, “Ab initio modeling of small proteins
by iterative TASSER simulations.” BMC Biol, vol. 5, no. 1, p. 17, May
2007.

[58] N. T. Karonis, B. Toonen, and I. Foster, “Mpich-g2: a grid-enabled
implementation of the message passing interface,” Journal of Parallel
and Distributed Computing, vol. 63, no. 5, pp. 551–563, 2003.

[59] A. R. Kinjo, K. Horimoto, and K. Nishikawa, “Predicting absolute
contact numbers of native protein structure from amino acid sequence,”
Proteins Struct Funct Bioinf, vol. 58, pp. 158–165, 2005.

[60] L. P. Chew and K. Kedem, “Finding the consensus shape for a protein
family,” in Proceedings of the 18th Annual Symposium on Computational
Geometry (SCG). New York: Springer, 2002, pp. 64–73.

[61] B. Rost and C. Sander, “Prediction of protein secondary structure at
better than 70% accuracy,” J Mol Biol, vol. 232, pp. 584–599, 1993.

Azhar Ali Shah is currently reading for the degree
of PhD at School of Computer Science, University of
Nottingham. He recieved the M.Sc (electronics) and
M.Phil (Information Technology) from University of
Sindh in 1998 and 2004 respectively. In Nov 2000
he was appointed to serve as a lecturer at Institute
of Information Technology, University of Sindh. In
Jan 2005 he was promoted to the post of assistant
professor. In Sep 2006, he was awarded foregin
scholarship under faculty development program to
pursue PhD study at School of Computer Science,

University of Nottingham.

