
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

A Machine Learning Approach for Rainfall
Estimation Integrating Heterogeneous

Data Sources
Massimo Guarascio , Gianluigi Folino , Francesco Chiaravalloti, Salvatore Gabriele,

Antonio Procopio, and Pietro Sabatino

Abstract— Providing an accurate rainfall estimate at individual
points is a challenging problem in order to mitigate risks derived
from severe rainfall events, such as floods and landslides. Dense
networks of sensors, named rain gauges (RGs), are typically used
to obtain direct measurements of precipitation intensity in these
points. These measurements are usually interpolated by using
spatial interpolation methods for estimating the precipitation
field over the entire area of interest. However, these methods
are computationally expensive, and to improve the estimation
of the variable of interest in unknown points, it is necessary to
integrate further information. To overcome these issues, this work
proposes a machine learning-based methodology that exploits a
classifier based on ensemble methods for rainfall estimation and
is able to integrate information from different remote sensing
measurements. The proposed approach supplies an accurate
estimate of the rainfall where RGs are not available, permits the
integration of heterogeneous data sources exploiting both the high
quantitative precision of RGs and the spatial pattern recognition
ensured by radars and satellites, and is computationally less
expensive than the interpolation methods. Experimental results,
conducted on real data concerning an Italian region, Calabria,
show a significant improvement in comparison with Kriging with
external drift (KED), a well-recognized method in the field of
rainfall estimation, both in terms of the probability of detection
(0.58 versus 0.48) and mean-square error (0.11 versus 0.15).

Index Terms— Computational infrastructure, geophysical data,
GIS, oceans and water, radar data.

I. INTRODUCTION

ACCURATE rainfall estimate is crucial for flood hazards
protection, river basins management, erosion modeling,

and other applications for hydrological impact modeling.
To this aim, rain gauges (RGs) are used to obtain a direct
measurement of intensity and duration of precipitations at
individual sites.

In order to estimate rainfall events in areas not covered
by RGs, interpolation methods computed on the basis of the
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values recorded by these RGs are used. Many variants of these
methods have been proposed in the literature, and among them,
the Kriging geostatistical method [1], [2] is one of the most
used and recognized in the field.

An accurate spatial reconstruction of the rainfall field is
a critical issue when dealing with heavy convective meteo-
rological events. In particular, convective precipitations can
produce highly localized heavy precipitation, not detected by
sparse RGs, and floods can arise without a rainfall being
detected [3]. To overcome this issue, a recent trend in the
literature is to integrate heterogeneous rainfall data sources
to obtain a more accurate estimate by using interpolation
methods [4].

Unfortunately, the largely used ordinary Kriging (OK) can
exploit only one source of data as input; therefore, Krig-
ing with external drift (KED) was one of the most popu-
lar approaches adopted to overcome this limitation [5], [6].
Indeed, KED allows a random field to be interpolated, and
different from the OK, it is able to take into account secondary
information. The main problem is that these methods are
computationally expensive and require a large number of
resources to work properly.

A different approach relies on exploiting machine learn-
ing (ML) techniques. However, using these methods requires
coping with different hard issues, i.e., unbalancing of the
classes, a large number of missing attributes, and the need
for working incrementally as soon as new data are avail-
able. Typically, ensemble methods are used to address these
issues. Ensemble [7] is a classification technique, in which
several models, first trained by using different classification
algorithms or samples of data, are then combined to classify
new unseen instances. In comparison with the case of using
a single classification model, the ensemble paradigm permits
handling the problem of unbalanced classes and reducing the
variance and the bias of the error. Especially, ensemble-based
techniques can be used to address the issues concerning the
rainfall estimation and to support the monitoring of mete-
orological (intense) events. These methods are also able to
capture nonlinear correlations (e.g., relations between sensor
data, cloud properties, and rainfall estimate).

In order to address the main issues of rainfall estimation,
in this article, an ML-based methodology, adopting a hier-
archical probabilistic ensemble classifier (HPEC) for rainfall
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estimation, is introduced. The proposed approach, by inte-
grating data coming from different sources (i.e., RGs, radars,
and satellites) and exploiting an undersampling technique
for handling the unbalanced classes problem typical of this
scenario, permits accurate estimation of the rainfall where RGs
are not available.

Our approach is an effective solution for real scenarios, as in
the case of an officer of the Department of Civil Protection
(DCP), who has to analyze the rainfall in a specific zone
presenting risks of landslides or floods. The experimental
evaluation is conducted on real data concerning Calabria,
a region located in the South of Italy, and provided by the
DCP. Calabria is an effective test ground because of its strong
climate variability and its complex orography.

Our contributions can be summarized as follows.

1) Three heterogeneous data sources (i.e., RGs, radar, and
Meteosat) are integrated to generate more accurate esti-
mates of rainfall events.

2) Different classification methods are compared on a real
case concerning Calabria, a southern region in Italy,
and a hierarchical probabilistic ensemble approach is
proposed.

3) Different ML-based methods, pretrained only on histor-
ical data, with a widely used interpolation method in the
hydrological field (i.e., KED) are compared.

The rest of this article is organized as follows. In Section II,
some related works are analyzed, and the main differences
with our approach are noted. Section III illustrates the
case study and describes the main sources of data used
by the framework. In Section IV, the methodology used to
estimate the rainfall is specified. Section V is devoted to
some experimental results and discussion. Finally, Section VI
concludes this article and shows some interesting future
developments.

II. RELATED WORKS

The term “weather nowcasting” refers to weather forecasts
concerning the near-future, typically a few hours, by using
data coming from radars, satellites, and other sources, and
usually, it is adopted to prevent many risks, such as landslides
and floods. This field of research shares similar techniques
and data sets with the task of rainfall estimation; therefore,
we decided to analyze also some works concerning this field
of research in the first part of this section.

Schroeter [8], similar to our work, also integrates input data
coming from radars, RGs, and satellites and uses artificial
neural networks (ANNs) as a forecasting method. Their exper-
iments are conducted on real data concerning Australia and the
integration of the data is necessary because, in this country,
radar coverage is not optimal, particularly in regional areas.
The experimental results show that their method overestimates
the rainfall. In [9], an approach based on neural networks
that keep track of spatiotemporal relationships is proposed
to cope with the problem of rainfall nowcasting. However,
only data provided by radars are considered. In [10], a hybrid
approach based on recurrent neural networks and support

vector machine (SVM) is used to provide rainfall forecasts
from typical meteorological parameters, such as humidity,
pressure, and temperature. An interesting review of the field
of rainfall prediction can be found in [11].

Other works based on the ensemble paradigm include the
work in [12], which, similar to our work, employs a proba-
bilistic ensemble and merges two sources of data (i.e., rain
gauges and radar) even if the aim of this work is to develop
a run-off analysis. Afterward, a blending technique is applied
to the results of the runoff hydrologic models to determine
a single runoff hydrograph. Experimental results show that
the hydrologic models are accurate and can help to make
more effective decisions in the flood warning. Frei and Isotta
[13] define a technique for deriving a probabilistic spatial
analysis of daily precipitation from rain gauges. The final
model represents an ensemble of possible fields, conditional
on the observations, which can be explained as a Bayesian
predictive distribution measuring the uncertainty due to the
data sampling from the station network. An evaluation of
a real case study, located in the European Alps, proves the
capability of the approach in providing accurate predictions
for a hydrological partitioning of the region. The work in
[14] proposes an interesting study of the daily precipitations
for Australia and several regions of South and East Asia,
based only on high-resolution gauges. Basically, the adopted
model can be figured out as a mean of the analyses generated
for each source. The authors highlight how the ensemble
approach outperforms the single members composing the
model in terms of global accuracy. Moreover, the proposed
model is also able to capture additional information from dif-
ferent precipitation products. Both the last two works exploit
an ensemble scheme to provide more accurate predictions,
proving the capability of ensemble methods to ensure good
results also in a rainfall estimate scenario. However, different
from our work, the adopted combination strategies are quite
simple, and a combination of heterogeneous data sources is not
considered.

The rest of this section is devoted to the analysis
of works specifically designed for rainfall estimation.
An extensive survey on these types of work can be found
in [15]. For the same Italian region studied in our work,
Calabria, Chiaravalloti et al. [16] studied the performance of
three recently developed satellite-based products, i.e., IMERG,
SM2RASC, and a clever combination of SM2RASC and
IMERG using as a benchmark both RG only data and the
integrated RG-radar product. Experiments permit to establish
that IMERG has good performance at time resolutions higher
than 6 h, and the combination of IMERG and SM2RASC
obtains a higher quality satellite rainfall product. Most of
the other approaches integrate data from different sources,
i.e., satellite channels and radars. Some of them are based on
the identification of suitable models that exploit the relation
between optical and microphysical properties of clouds and
use the data to find the appropriate parameters for these
models [17], [18]. Other works individuate the models by
using statistical techniques [19]–[21]. For instance, Bayesian
estimation is used in [22] in order to provide precipitation
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estimations based on satellite multispectral data; reference
estimates are provided by methods that use radar data as
input. Verdin et al. [23] also adopt Bayesian estimation in
order to estimate the parameters of the model; their system
integrates RG observations and satellite data and adopts an
interpolation technique based on the Kriging method.

All these techniques are able to provide interesting results,
but they require a rather delicate phase of parameters estima-
tion of the particular model; therefore, as a side effect, usually,
their flexibility and effectiveness tend to be hampered.

As the relations between sensors data, cloud properties,
and rainfall estimates are highly nonlinear, more flexible
approaches based on ML techniques have been investigated
recently. For instance, the problem of detecting convective
events and closely related rainy areas is addressed in [24] by
using ANNs combined with support vector machines. Data
sets are obtained by processing data coming from optical
channels of the multispectral instrument onboard of Meteosat
Second Generation (MSG) satellites; different from our work,
RG measures are used only as a reference but not in the
training phase of the algorithm. Sehad et al. [25] propose an
approach to rainfall estimation based on SVMs; the input data
are integrated from multispectral channels on MSG; and two
models are developed for daytime and nighttime respectively.
Results are compared to similar approaches based on ANNs,
and random forest (RF) and RGs are used only to validate the
approach. Another approach based on ANNs is described in
[26]; in this work, given as an image matrix, radar data are
used as reference in detecting rainy pixels. Kuhnlein et al. [27]
also adopt the ensemble paradigm and, in particular, employ
RFs to infer rainfall rates from data coming from multispectral
channels on MSG satellites.

In [28], a hybrid architecture that combines support vector
regression (SVR) models, genetic programming, and recurrent
networks is presented. The experimental results, performed on
a real data set concerning the typhoon season in northern
Taiwan, exhibit good performance in estimating the height
of the rainfall. Backpropagation neural networks are used in
[29] to combine data coming from multispectral channels on
MSG satellites and parameters usually considered in numerical
weather predictions. Rainfall rates estimated from the radars
are used in the training phase of the neural network. Deep
neural networks are used to improve rainfall rates estimation
using only radar data in [30] and [31].

Finally, in [32], different data mining techniques are com-
pared on the problem of rainfall estimation from multispectral
satellite data. Techniques considered include RF, neural net-
works, and support vector machines. Experiments show that
no particular algorithm performed dramatically better than the
others; the authors conclude that further research is necessary
to investigate whether different base learners could improve
the results.

Our approach is also similar to some of the analyzed works
on the ensemble paradigm; however, we do not rely on a single
data source, as do most of the works present in the literature,
but our approach integrates information coming from different
sources, i.e., radars, satellites, and RGs. In addition, as the
classes in this problem are intrinsically unbalanced, we also

perform an undersampling during the training phase, which it
is not used in the other works.

III. CASE STUDY: RAINFALL ESTIMATION IN CALABRIA

In this section, the peculiarities of the Calabria region and
the main characteristics of the three sources of data integrated
to estimate the rainfall events are described.

A. Data Description

Calabria covers an area of 15 000 km2. This region exhibits
high climatic variability [33], mainly due to its particular
orography (i.e., the proximity of mountains and seas) and to
the influence of the Mediterranean Sea. Calabria is charac-
terized by the presence of small and very small basins that
may be prone to landslides and flash floods during localized
rainfall [34], [35]. Thus, an accurate spatial rainfall field is
necessary for hydrological impact studies and for a correct
analysis of hydrological scenarios producing floods and land-
slides affecting this fragile territory [36]. For these reasons,
RG, weather radar, and MSG data collected during 2016 for
Calabria will be used to test the framework developed in
this work.

In particular, the Calabrian DCP supplies RG data,
extracted from a real-time monitoring system consisting of a
network of 156 telemetered sensors with an average distance
of about 10 km. These data consist of precipitation heights
measured in mm sampled every minute.

Radar data are supplied by the DCP, by exploiting the
Italian meteorological radar network (20 weather radars spread
over the whole Italian territory). Data are collected in near real
time and processed by merging high-resolution volumetric
data using the methodology described in [37]. The final data
have a time resolution of 10 min over a grid with a spatial
resolution of 1 km and include Constant Altitude Plan Position
Indicator (CAPPI) that gives a horizontal cross section of
reflectivity at 2000, 3000, and 5000 m above sea level
(a.s.l.); vertical maximum intensity (VMI) that represents the
maximum reflectivity value present on every point’s vertical
axis; and the surface rain intensity (SRI) that estimates the
ground rain rate. The SRI product is obtained applying the
Marshall–Palmer reflectivity-rainfall (Z-R) relationship to
the lowest radar beam [38]. The study area is covered by
two C-band weather radars, and their range is about 200 km
(see Fig. 1).

The Meteosat Second Generation (MSG) data are provided
by the European Organization for the Exploitation of Mete-
orological Satellites (EUMETSAT). The Spinning Enhanced
Visible and Infrared Imager (SEVIRI), onboard the geostation-
ary MSG satellite, supplies detailed images of the full Earth
disk at 12 different wavelengths and monitors the dynamic
evolution of cloud structures at a high temporal resolution
due to the rapid scan service (RSS), which provides an image
every 5 min [39]. These characteristics allow the detection of
rapidly developing high impact weather. Moreover, data from
different channels correspond to different physical properties
of the observed cloudy structures. For example, in the thermal
infrared band (10–12 μm), satellites supply indications on
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Fig. 1. Map of Calabria, projection system UTM WGS84, zone 33N. The
points represent the RG network, while the large dashed circles represent the
radar ranges (the location of the Calabrian radar is indicated by the solid
triangle).

the temperature of the cloudy area, which is related to the
cloud height and to the convection development. The spatial
resolution for the region considered in this work is about 4 km.

IV. METHODOLOGY

This section describes the methodology proposed to esti-
mate the rainfall in a specific zone exploiting an ML-based
approach.

In Fig. 2, the overall learning and evaluation process,
composed of three main phases (i.e., information retrieval,
ML, and evaluation), is sketched. Information retrieval focuses
on gathering the data required for the analysis. In this phase,
different types of information, from several data sources, are
extracted and integrated. Especially, a data source connector
is used to establish the connection with a specific data source;
then, the gathered data are provided as input for the data
wrapper that combines these data in a single view suitable for
the next analysis phase. Raw data are stored in the knowledge
base (KB), which is exploited for the data exchange among
the framework components.

In the ML phase, raw data are preprocessed to make
them suitable for the analysis, and an undersampling strategy
is adopted to address the class unbalanced problem. Then,
a rainfall estimation model can be trained from the pre-
processed data. To this aim, in this work, we introduce a novel
metaensemble probabilistic classifier (named HPEC in the fig-
ure) and described in Section IV-C. However, the architecture
is modular, and also another different estimation model could
also be adopted.

In the final phase, i.e., evaluation, the rainfall estimations
are computed for a set of preprocessed data by exploiting
the trained model. This phase can be performed on both:
1) ungauged points (in a real usage scenario) in order to
estimate the severity class of these points and 2) a separated set
of training data (i.e., not used in the learning phase). For this
latter case, how specified in the experimental section, we know
the real class (as an RG is present); however, this value is

Fig. 2. Overall system diagram of the learning and evaluation processes.

removed in order to obtain the estimated class, and it is used
only to compute the performance measures also reported in
the experiments.

In the following, the preprocessing phase (the way in which
the information extracted by several data sources is combined)
and the proposed ensemble-based approach are detailed.

A. Data Preprocessing

One of the main novelties of the approach is the integration
of three main sources of data to better estimate rainfall events.
However, the integration needs to overcome the issues con-
cerning the heterogeneity of the data, so some preprocessing
operations have to be performed to adjust the different scales
both in terms of time and space.

A 30-min temporal sampling of the measurements was
deemed appropriate for the purposes of this article, considering
an acceptable balance between the need for a high temporal
resolution and the need to reduce the statistical noise of the
data (as pointed out in [40]); therefore, the RGs and the SRI
data were cumulated every 30 min. Furthermore, as, in many
cases, near points exhibit related rain conditions, it is useful to
take into account the distance among the RGs. Thus, for every
point, the coordinates of the four nearest points containing an
RG, together with the distance, are considered.

To summarize, for every point in which an RG is present,
for a 30-min time step, 35 features were extracted (as also
illustrated in Table I), as detailed in the following.

1) From the Radars (5 Features): SRI, cumulated over
30 min, VMI, and three values of CAPPI (horizontal
cross section of reflectivity at 2000, 3000, and 5000 m
a.s.l.); the last value was taken for all these four features.

2) From the MSG Satellites (11 Features): The last value of
the 11 Meteosat channels (excluding the high-resolution
visible channel number 12).

3) From the RGs (16 Features): The coordinates of the
four nearest points containing an RG, together with the
distance and the value measured by the RG.
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TABLE I

FEATURES EXTRACTED FROM THE THREE SOURCES OF DATA: RADAR, SATELLITE, AND RGS (i = 1, . . . , 4)

4) Other Data (Three Features): Longitude and latitude of
the point and the month in which the data are detected.

It is important to remark that different spatial resolutions
have been used in the data fusion process (respectively, 1 km
for the radar and 4 km for the MSG satellite); in prac-
tice, the features, respectively coming from of the resolution
cell (pixel) of the satellite or of the radar, are determined by
the point in which the RG falls.

The final data set covers a period concerning the second half
of 2016 in Calabria. After the phase of undersampling and
preprocessing, it consists of 117 600 tuples and 35 features.
Each tuple represents an observation for a predetermined
period of time of 30 min, in a point of space corresponding
to one of the 156 RGs in Calabria. The class to be estimated
is measured by the RGs, and consider the mm of rain fell
in the considered range of 30 min and is discretized into five
classes according to these ranges: [0−0.5, 0.5−2.5, 2.5−7.5,
7.5 − 15, 15−]. The numbers of tuples for each class are,
respectively, 94 080, 18 514, 4221, 654, and 131. The correct
classification of the latter two classes is particularly important
because they represent heavy rainfall events, which must be
handled adequately. However, the number of tuples belonging
to these two classes is really unbalanced as the ratio between
each of them and the majority class (0 − 0.5, named in the
following no-rain for the sake of simplicity) is very low, and
therefore, correctly classifying these two rare classes of events
is a really challenging problem.

B. Undersampling Strategy

After the integration of the three data sources, i.e., RG
data, weather radar, and MSG data, a sampling strategy must
be adopted to avoid the class unbalance issue. In the class
unbalance problem [41], the minority classes are overcome
by the numerousness of the majority class. In the literature,

different strategies are proposed to tackle this problem; in
particular, the techniques based on undersampling obtain good
results in terms of accuracy, while oversampling the other
classes usually causes overfitting. Therefore, we adopt an
undersampling strategy [42] operating only on the no-rain
class, while the other four classes, representing different
levels of rain, are not affected by the method. A random
uniform undersampling strategy is adopted, which operates
on two levels: first, only temporal periods presenting all the
points without rain events are chosen; then, always uniformly,
a random number of spatial points are removed from this
period. In order to avoid loss of information, nothing is done
in days presenting rain and no-rain points.

C. Ensemble-Based Approach

In our framework, the rainfall estimation problem is
addressed as a classification task. A classifier permits to divide
the data into predefined categories (also called classes). Fre-
quently, classifiers are also used to predict unknown categories
for new unseen instances.

Formally, let S = {(xi , yi)|i = 1, . . . , N} be a training set
where xi , called example or tuple or instance, is an attribute
vector with m attributes and yi is the class label associated with
xi , where xi ∈ {L1, . . . , LC } and C is the number of classes.
A classifier, given a new example, has the task to assign the
class label for it, i.e., the task consists of computing a function
h(xi) that is able to estimate y∗

i (with y∗
i ≈ yi ).

Ensemble [7], [43] is a learning paradigm where multiple
base learners are trained for the same task by a learning
algorithm, and the classifications of the component learners
are combined for dealing with new unseen instances. In our
framework, a set of classifiers are adopted as base learners.

Formally, as shown in Fig. 3, ensemble techniques build S
classifiers T1, . . . , TS , each one trained on a different sampling
of the training set (or also on differently weighted tuples of



6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 3. Ensemble learning scheme.

the same training set or adopting different learning algorithms
always on the same training set); then, they are combined
according to a suitable combination strategy to classify the
test set. Basically, given as input the classifications of the
base classifiers T1, . . . , Ts , ensemble learning techniques allow
combining them and computing a function h∗ that is able to
produce the final classification.

In the literature, three standard combination strategies have
been widely used: boosting, Bootstrap aggregation (bagging),
and stacking.

Boosting was introduced by Schapire [44] and Freund
[45] to improve the performance of any “weak” learning
algorithm, i.e., an algorithm that “generates classifiers that
need only be a little bit better than random guessing” [45].
The boosting algorithm, called AdaBoost, adaptively changes
the distribution of the training set according to how difficult
each example is to classify.

Basically, in bagging-based approaches [7], different subsets
of the training data (extracted via a bootstrap resampling
strategy) are used to train the base learners, while the final
assignment is computed via a simple voting scheme.

Stacking [46] (stacked generalization) is an effective
ensemble-based approach able to exploit the output of several
classifiers to learn a more accurate metalearner. The whole
training set is used to learn each single base model. Basically,
the algorithm uses the trained models to build a stacked
view, i.e., a table, in which each row corresponds to the
classification of each base model for the corresponding tuple
of the initial training data set; therefore, each column contains
the assignment of each classifier. Finally, this view is used to
train a metalearner in order to compute the final classification.
Alternatively, the class probabilities of the same classifiers can
be directly used to train the metalearner. In our approach,
we adopt this latter strategy.

RF [47] is an efficient and particularly accurate
ensemble-based technique. This algorithm combines
simultaneously two different strategies: a bagging algorithm
and a random selection of the features. Especially, the bagging
approach is applied to a set of tree-based classifiers (base
models). The main difference with respect to a simple bagging
method relies on the building procedure of the decision trees,
which are trained and evaluated only on a randomly chosen
subset of the features.

Fig. 4. HPEC model.

In our methodology, after the preprocessing and undersam-
pling steps, an HPEC is adopted to learn a model able to
estimate the rainfall events. The source code of HPEC, used
to run the experimental results shown in Section V, is available
at https://github.com/massimo-guarascio/ml-rainfall.

Although the idea of combining different learners in a hier-
archical way is not new in itself, to the best of our knowledge,
our specific hierarchical model has not been previously used
to tackle the rainfall estimation problem.

Usually, when the number of examples for the minor-
ity classes is low in comparison with the majority class,
stacking-based techniques behave better, as they avoid the
overfitting problem typical in unbalanced data sets. Therefore,
we adopted a stacking method for HPEC, which follows the
architecture reported in Fig. 4. As a base learner, in the
first stage, we adopt RFs (note that an RF is also an
ensemble), as this technique exhibits good performance in
unbalanced scenarios, reducing the problem of the overfitting,
as different subsets of features are exploited in the training
phase.

Especially, our approach exploits a two-level ensemble
classifier: 1) in the first level, a set of ensembles (i.e., the RF
classifiers) are trained on the same data set, but initialized
with different random seeds, in order to vary the feature subset
generation during the learning of the decision trees composing
the forest and 2) in the second level, a probabilistic metalearner
is used to combine the estimates provided by the first level
classifiers according to a stacking schema [46]. In more detail,
their estimates are combined in a stacked view, in which each
row i contains an estimate (i.e., a vector composed of the class
probabilities, provided by each base model) for the class of
the tuple i of the training data set. This view is provided as
input for a probabilistic Bayesian model. Finally, the output
of the metalearner is the estimate of the class of the rainfall
event, obtained on the basis of the probabilities provided by
the base models.

V. EXPERIMENTAL RESULTS

In order to assess the quality of our approach in estimating
rainfall, different experiments on the real data concerning Cal-
abria are conducted. First, different ensemble-based techniques
(RF, boosting, and HPEC) are compared. In addition, these
ensemble algorithms are also compared with the decision tree
algorithm and with the support vector regression model, which
has been successfully used in the field of rainfall forecasting
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[28]. Then, the ensemble approach is compared with the
baseline method (Kriging with external drift), largely used
and well-recognized in the field of rainfall estimation. Finally,
the different contributions of neighboring RGs, satellites, and
radar measures are studied.

The ensemble-based algorithms, the decision tree, and
the SVR model, adopted in this article, are based on the
well-known scikit-learn ML implementation.1 If not differently
specified, the algorithms were run using standard parameters.
No tuning of the parameters was conducted. As for the KED
method, we used the RG data as the primary variable and the
radar data as the auxiliary information. The KED interpolation
is performed by using the “autokrige” method described in
[48] and implemented in the Automap and Gstat libraries of
the statistical software R. Using this method, the theoretical
variogram is automatically determined by picking the best
fitting model. This procedure results in fully automated, and
it allows, in near real-time, the estimation of the areal rainfall
field over a 1 × 1 km2 spatial grid, with a time resolution
of 10 min.

All the algorithms were trained on a training set composed
of 2/3 of the original data set and then evaluated on the test
set, consisting of 1/3 of the original data set. In practice, for
each period of time, 2/3 of the observation points (RGs) were
randomly chosen from the original data set, and they form
the training set, while the remaining points will constitute the
test set (and are excluded also for the interpolation method
of Kriging). The original data are continuous; however, our
classification approach needs discretized classes to work, and
in addition, we are interested in retrieving the fine spatial
structure of the precipitation field in order to correctly interpret
the level of hazard for a given area (and not in the estimating
the high-resolution value of rainfall). Therefore, the HPEC
classification process is conducted after discretization of the
original data into five classes, as described in Section IV-A.
On the contrary, the Kriging method works with the continuous
original data, and only at the end of the interpolation process,
the final result is approximated to the class, whose range
contains the obtained continuous value.

All the experiments were averaged over 30 runs. We adopt
metrics taking into account the rarity of the minority classes,
in order to avoid the problem of overestimating the accuracy of
a classifier to recognize the instances of these classes correctly.
Notably, true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) can be easily computed from
the confusion matrix.

Therefore, in addition to the well-known metrics of
Precision and Recall (in the field of rainfall estimation,
usually named POD, i.e., probability of detection),
computed, respectively, as Precision = (TP/FP + TP)
and Recall = (TP/FN + TP), we adopted some measures,
deriving from these metrics, largely used in the field of rainfall
estimation [49], i.e., the false-alarm ratio (FAR), computed
as FAR = (F P/(TP + FP)), the critical success index (CSI),
computed as CSI = (TP/(TP+FP+FN)), and the mean square
error (MSE), computed as MSE = (1/n)

∑n
i=1(y(i) − ỹ(i))2,

1http://scikit-learn.org/stable/

TABLE II

CSI, FAR, POD, AND MSE FOR THE SVR, DECISION TREE, BOOSTING,
RF, AND HPEC

TABLE III

PRECISION, RECALL, AND F-MEASURE FOR THE SVR, DECISION TREE,
BOOSTING, RF, AND HPEC FOR THE MINORITY CLASSES 4 AND 5

where n is the number of points and y(i) and ỹ(i) are,
respectively, the real and the estimated class. Finally, we also
considered F-measure, i.e., the weighted harmonic mean of
precision and recall (or POD), computed only for the minority
classes (4 and 5), which regard intense rainfall events.

A. Comparison of Ensemble-Based Techniques

We performed the Friedman test for all the evaluation
measures (columns) of Tables II and III, while the Nemenyi
is adopted as post hoc test, as suggested in [50].

Table II reports the values of CSI (higher is better), FAR
(lower is better), POD (higher is better), and MSE (lower is
better) for the five algorithms, while, in Table III, Precision,
Recall, and F-measure for the minority (and presenting a
high-intensity of rainfall) classes 4 and 5 are shown.

For all the measures, the Friedman test is verified, and con-
sequently, the differences among the algorithms are significant.
Therefore, the null hypothesis is rejected, and then, in the
following, we analyze the rankings and the post hoc test for
the most important measures for our particular application,
i.e., FAR, POD, and MSE (see Table II) and Recall and
F-Measure (see Table III) for the minority classes.

In terms of POD, the test indicates that HPEC is sig-
nificantly better than the other approaches. No significant
differences are reported between SVR and decision tree and
also for boosting and RF.

As for the mean-square error (MSE), according to the
significance test, the RF algorithm is significantly better than
the other ones, while HPEC is not significantly different from
the other algorithms.

As for the F-measure, for the minority class 4, both in terms
of Recall and F-measure, HPEC is significantly better than
all the other approaches. On the contrary, RF and boosting
are not significantly different, and in the same way, SVR and
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TABLE IV

CSI, FAR, POD, AND MSE FOR THE KRIGING, RF, AND HPEC. THE VALUES IN BOLD (LIGHT GRAY) ARE SIGNIFICANTLY BETTER (WORSE) THAN
THE KRIGING METHOD

TABLE V

PRECISION, RECALL, AND F-MEASURE FOR THE KRIGING, RF, AND

HPEC FOR THE MINORITY CLASSES 4 AND 5. THE VALUES IN BOLD
(LIGHT GRAY) ARE SIGNIFICANTLY BETTER (WORSE) THAN THE

KRIGING METHOD

decision tree are not significantly different. Finally, for class 5,
HPEC is significantly better than all the other algorithms
for the recall measure, while the ensemble-based algorithms
overcome the other algorithms for the F-measure, but they
are not significantly different among themselves. Therefore,
by considering that we are particularly interested in detecting
a larger number of heavy rainfall events (class 4 and 5), HPEC
appears to be a good choice.

B. Comparison of Ensemble-Based Algorithms
and Kriging

This section aims to evaluate whether ensemble-based algo-
rithms improve the performance in comparison with largely
used traditional algorithms designed by experts of the domain,
as the Kriging algorithm. More in detail, the adopted algorithm
is Kriging with external drift (KED), using the RG and the
radar data, respectively, as primary and secondary variables.

The significance of the differences between Kriging and
each ensemble algorithm is evaluated by using the Wilcoxon
signed-ranked test [confidence level equal to 0.95 (α = 0.05)].
This test is conducted both for Kriging versus RF and Kriging
versus HPEC, as we are mainly interested in the comparison
with the Kriging algorithm. The values that are significantly
better are reported in bold, while the values that are signifi-
cantly worst are reported in light gray.

Table IV reports, for the three algorithms, the values of CSI,
FAR, POD, and MSE, while Table V reports Precision, Recall,
and F-measure for the minority (and high-rate rainfall) classes
4 and 5. For all the measures, the ensemble-based algorithms
perform significantly better (see Table IV). In particular, HPEC
reaches a high value for the POD measure (0.58).

As for the minority classes, in spite of having a worse
precision, HPEC exhibits a better recall. In addition, by con-
sidering the F-measure, there are no significant differences
between Kriging and HPEC both for classes 4 and 5, while the

Fig. 5. Kriging with external drift. (a) HPEC. (b) Kriging with external drift.

RF algorithm behaves considerably worse. However, the MSE
is considerably better for the ensemble-based techniques in
comparison with KED. Then, the misclassification regards,
in many cases, classes not so dissimilar for the amount
of rainfall, i.e., a rainfall of class 4 could be assigned to
class 3 or 5.

The results of this section suggest that a clever combination
of Kriging and ML algorithms could further improve the
capacity of the framework to detect heavy rainfall events.

An example of the differences in reconstructing the rainfall
is shown in Fig. 5, respectively, (a) for the HPEC and (b) for
KED. We would like to point out that this figure gives just
a qualitative idea of the behavior of the two techniques for
a significant event. We choose a very rainy event outside of
the training period considered (November 6, 2017), in which
three RGs registered their annual maximum of rainfall (about
42.4 mm for an hour). In order to compare the results, we con-
sider the rain cumulated every 30 min, and we discretize the
estimate of the Kriging method on the same classes considered
for the ML approach. From this figure, it seems that the
HPEC approach gives better detail of the rainfall events;
however, further investigations should be conducted to draw
a conclusion. For a more accurate comparison, it would be
better to refer to the results reported in the previous tables.

C. Effect of Integrating RG, Satellite, and Radar
Measurements

Similar to other works [8], [25], in our framework data
coming from RGs, satellites, and radars are integrated in order
to classify rainfall events better. In this section, we want
to investigate the effect of this integration, by understanding
whether all the three types of measurement are necessary to
the classification. To this aim, by using the HPEC, we run
three different suites of experiments by excluding, for each
suite, one of the three types of measurement.
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TABLE VI

CSI, FAR, POD, AND MSE FOR THE HPEC, USING ALL THE FEATURES VERSUS NOT CONSIDERING, RESPECTIVELY, RG, RADAR, AND SATELLITE
DATA. THE VALUES IN LIGHT GRAY ARE SIGNIFICANTLY WORSE THAN THE METHOD USING ALL THE FEATURES

TABLE VII

PRECISION, RECALL, AND F-MEASURE FOR THE HPEC, USING ALL THE

FEATURES VERSUS NOT CONSIDERING, RESPECTIVELY, RG, RADAR,
AND SATELLITE DATA, FOR THE MINORITY CLASSES 4 AND 5. THE

VALUES IN LIGHT GRAY ARE SIGNIFICANTLY WORSE THAN
THE METHOD USING ALL THE FEATURES

Tables VI and VII report the results for the cases of using
all the features, and, respectively, in the case of the removal of
the RG features, of the radar features and the satellite features.

From Table VI, it is clear that, by removing the RG
information, the performance of the algorithm worsens for all
the measures. On the contrary, by removing one of the other
two types of data, the performance is less affected, even if the
lower value (0.11) of the MSE, obtained when all the data are
used, confirms the utility in using all the sources of data.

The benefit derived from the integration of the three sources
is also confirmed by the F-measure in Table VII.

VI. CONCLUSION AND DISCUSSION

An ML-based approach for the spatial rainfall field esti-
mation has been defined. By integrating heterogeneous data
sources, such as RGs, radars, and satellites, this methodology
permits estimation of the rainfall, where RGs are not present,
also exploiting the spatial pattern recognition ensured by
radars and satellites. After a phase of preprocessing, a ran-
dom uniform undersampling strategy is adopted, and finally,
an HPEC permits the model used to be built to estimate the
severity of the rainfall events. This ensemble is based on two
levels: in the first level, a set of RF classifiers are trained,
while, in the second level, a probabilistic metalearner is used
to combine the estimated probabilities provided by the base
classifiers according to a stacking schema.

Experimental results conducted on real data provided by the
Department of Civil Protection show significant improvements
in comparison with Kriging with external drift, a largely used
and well-recognized method in the field of rainfall estimation.
In particular, the ensemble method exhibits a better capacity in
detecting the rainfall events. Indeed, both the POD (0.58) and
the MSE (0.11) measures obtained by HPEC are significantly
better than the values obtained by KED (0.48 and 0.15,
respectively). As for the last two classes, representing intense

rainfall events, the difference between the Kriging method
and HPEC is not significant (in terms of F-measure) although
HPEC is computationally more efficient.

Indeed, the complexity of the Kriging method is cubic in
the number of the samples [51], which makes the procedure
really expensive from the computational point of view, when a
large number of points are analyzed. On the contrary, the ML
algorithms (i.e., RF) exhibit a quadratic complexity. More-
over, ensemble methods are highly scalable and parallelizable.
Therefore, we believe that our approach has some relevant
advantages in this field of application.

In addition, by analyzing the effect of the integration of the
different sources of data, it is evident that all the data sources
contribute to the good performance of the technique. In par-
ticular, by removing the RG information, the performance
of the algorithm worsens the sensibly for all the measures.
In the cases of the removal of one of the other two types
of data, the degradation is less evident; however, the lowest
value (0.11) of the MSE is obtained when all the data are used,
which confirms that it is necessary to use all the sources of
data to obtain better results.

As future work, we plan to validate the method on a larger
time interval, in order to consider effects due to seasonal
and yearly variability, also considering the possibility of
incrementally building the flexible ensemble model with the
new data. In addition, we want to evaluate the effectiveness
of the algorithm in individuate highly localized heavy
precipitation events, also by adopting time series analysis to
analyze the individual contributions of the different features
for radar and Meteosat.
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