
Training Distributed GP Ensemble with a Selective Algorithm

based on Clustering and Pruning for Pattern Classification

Gianluigi Folino, Clara Pizzuti, and Giandomenico Spezzano

ICAR-CNR,

Via P.Bucci 41/C,

Univ. della Calabria

87036 Rende (CS), Italy

{folino,pizzuti,spezzano}@icar.cnr.it

June 5, 2007

Index terms: data mining, genetic programming, classification, clustering, ensemble, boosting.

Corresponding author: Clara Pizzuti

Abstract

A boosting algorithm based on cellular genetic programming to build an ensemble of

predictors is proposed. The method evolves a population of trees for a fixed number of

rounds and, after each round, it chooses the predictors to include into the ensemble by

applying a clustering algorithm to the population of classifiers. Clustering the population

allows the selection of the most diverse and fittest trees that best contribute to improve

classification accuracy. The method proposed runs on a distributed hybrid environment that

combines the island and cellular models of parallel genetic programming. The combination

of the two models provides an efficient implementation of distributed GP, and, at the same

time, the generation of low sized and accurate decision trees. The large amount of memory

required to store the ensemble makes the method heavy to deploy. The paper shows that,

by applying suitable pruning strategies, it is possible to select a subset of the classifiers

without increasing misclassification errors; indeed, for some data sets, up to 30% of pruning,

ensemble accuracy increases. Experimental results show that the combination of clustering

and pruning enhances classification accuracy of the ensemble approach.

1 Introduction

Ensemble learning algorithms have captured an increasing interest in the research community

because of their capability of improving the classification accuracy of any single classifier. An

ensemble of classifiers is constituted by a set of predictors that, instead of yielding their individual

decisions to classify new examples, combine them together by adopting some strategy [4, 5, 6,

12, 19]. It has been pointed out that the boost in accuracy is tightly related with the diversity

of the classifiers [12, 22]. Two classifiers are defined to be diverse if they make different incorrect

predictions on new data points. Several approaches for building ensembles satisfying the diversity

demand have been proposed. The AdaBoost algorithm introduced by Freund and Schapire [19]

showed to be efficacious at generating different classifiers. It guides the underlying learning

algorithm to focus on harder examples by adaptively changing the distributions of the training

set on the base of the performance of previous classifiers.

The combination of Genetic Programming (GP) [21] and ensemble techniques has been

receiving a lot of attention because of the improvements that GP obtains when enriched with

these methods [26, 25, 10, 17, 20, 23, 30].

It is worth pointing out that an advantage of using GP , not yet exploited, is that a population

of predictors could be considered as an ensemble of predictors. This assumption would provide

at the same time many and diverse classifiers. However, the size of a population generally is not

small. Another problem could be the accuracy of some of the trees contained in the population.

Taking all the individuals of a population at each generation is not a practical approach because

of the resulting high number of predictors, possibly of low quality. A plausible proposal would

be to use a clustering algorithm [13] to group individuals in the population that are similar with

respect to a similarity measure and then take the representatives of these clusters.

2

In this paper a distributed boosting cellular Genetic Programming classifier to build the

ensemble of predictors is proposed. The algorithm, named ClustBoostCGPC (Clustering Boost

Cellular Genetic Programming Classifier), runs on a distributed environment based on a hybrid

model [2] that combines the island model with the cellular model. The island model enables

an efficient implementation of distributed GP. On the other hand, the cellular model allows

the generation of classifiers with better accuracy and reduced tree size. Each node of the

network is considered as an island that contains a learning algorithm, based on cellular genetic

programming, whose aim is to generate decision-tree predictors trained on the local data stored

in the node. Every genetic program, however, though isolated, cooperates with the neighboring

nodes by collaborating with the other learning components located on the network, and takes

advantage of the cellular model by asynchronously exchanging the outermost individuals of the

population.

ClustBoostCGPC constructs an ensemble of accurate and diverse classifiers by employing

a clustering strategy to each subpopulation located on the nodes of the network. The strategy,

at each boosting round, finds groups of individuals similar, with respect to a similarity measure,

and then takes the individual of each cluster having the best fitness. This allows the selection,

from each subpopulation, of the most dissimilar and fittest trees.

The main drawback of the approach proposed is that the size of the ensemble increases as

the number of clusters and the nodes of the network increases. Thus we could ask if it is possible

to discard some of these predictors and still obtain comparable accuracy. The paper shows that,

by applying suitable pruning strategies, it is possible to select a subset of the classifiers without

augmenting misclassification errors; indeed, up to 30% of pruning, ensemble accuracy increases.

The main contributions of the paper can be summarized as follows.

ClustBoostCGPC is a distributed ensemble method that mixes a supervised classification

method with an unsupervised clustering method to build an ensemble of predictors.

Clustering the population of classifiers revealed a successful approach. In fact the misclassi-

fication error rate of the ensemble sensibly diminishes when the ensemble is constituted by the

best individuals in the clustered populations.

3

The method is enriched with pruning strategies that allow the reduction of the size of the

ensemble, and, more notably, to improve classification accuracy. This result agrees with the

logical principle of Occam’s razor that one should not make more assumptions than the minimum

needed and choose, from a set of equivalent models, the simplest one.

The algorithm runs on a distributed environment. The distributed architecture gives signif-

icant advantages in flexibility, extensibility, and efficiency since each node of the network works

with its local data, and communicates the local model computed with the other nodes to obtain

the results.

To assess the effectiveness of the method, experiments on several data sets are presented and

compared with other approaches when different sizes of the ensemble are used.

Three pruning strategies are presented and compared to analyze their influence on the ensem-

ble accuracy. The combination of these strategies is then investigated with the aim of decreasing

ensemble size and improving classification accuracy. Experimental results pointed out that the

proposed approach is particularly effective since it reduces the misclassification error rate of the

algorithm.

This paper is organized as follows. The next section reviews ensemble techniques. In Section

3 the algorithm ClustBoostCGPC and the software architecture used to run it are described.

Section 4 describes the pruning strategies adopted to reduce the size of the ensemble. In section 5

the results of the method on some standard problems are presented. Section 7, finally, concludes

the paper by giving a discussion of the approach and some final considerations.

2 Ensemble techniques

Let S = {(xi, yi)|i = 1, . . . , N} be a training set where xi, called example or tuple or instance, is

an attribute vector with m attributes and yi is the class label associated with xi. Let X denote

the set of tuples and Y the set of class labels. Each attribute can be either discrete or continue.

A predictor (classifier), given a new example, has the task to predict the class label for it.

Ensemble techniques [4, 5, 12, 28] build a number of predictors, each on a different training

set, then combine them together to classify the test set. Boosting was introduced by Schapire [28]

4

and Freund [29] for boosting the performance of any “weak” learning algorithm, i.e. an algorithm

that “generates classifiers which need only be a little bit better than random guessing” [29].

The boosting algorithm, called AdaBoost, adaptively changes the distribution of the training

set depending on how difficult each example is to classify. Given the number T of trials (rounds)

to execute, T weighted training sets S1, S2, . . . , ST are sequentially generated and T classifiers

C1, . . . , CT are built to compute a weak hypothesis ht : X → Y. Let wt
i denote the weight of the

example xi at trial t. At the beginning w1
i = 1/n for each xi. At each round t = 1, . . . , T , a weak

learner Ct, whose error ǫt is bounded to a value strictly less than 1/2, is built and the weights

of the next trial are obtained by multiplying the weight of the correctly classified examples by

βt = ǫt/(1 − ǫt) and renormalizing the weights so that Σiw
t+1
i = 1. Thus “easy” examples get

a lower weight, while “hard” examples, that tend to be misclassified, get higher weights. This

induces AdaBoost to focus on examples that are hardest to classify. The boosted classifier gives

the class label y that maximizes the sum of the weights of the weak hypotheses predicting that

label, where the weight is defined as ln(1/βt).

Freund and Schapire [29] showed theoretically that AdaBoost can decrease the error of

any weak learning algorithm and introduced two versions of the method, AdaBoost.M1 and

AdaBoost.M2. AdaBoost.M1, when the number of classes is two, requires that the prediction

be slightly better than random guessing. However, when the number of classes is more than 2,

a more sophisticated error-measure, called pseudo-loss, is introduced. In this paper we use the

AdaBoost.M1 version.

Proposals to combine Genetic Programming and ensemble techniques can be found in [26,

25, 10, 17, 20, 23, 30].

In particular, BoostCGPC (Boost Cellular Genetic Programming Classifier) [17] implements

the AdaBoost.M1 boosting algorithm of Freund and Shapire [19] on a parallel computer by

using the algorithm CGPC (Cellular Genetic Programming for data classification) [15] as base

classifier. Given a training set S of size N and the number P of processors used to run the

algorithm, BoostCGPC partitions the population of classifiers in P subpopulations, creates P

subsets of tuples of size n < N by uniformly sampling instances from S with replacement, and

5

builds an ensemble of classification trees by choosing from each subpopulation the individual

having the best fitness. In the next section the algorithm ClustBoostCGPC is presented and

the main differences with BoostCGPC are outlined.

3 ClustBoostCGPC

In this section the description of the algorithm ClustBoostCGPC is given. The method builds

an ensemble of classifiers by using, analogously to BoostCGPC, at each round of the boosting

procedure, the algorithm CGPC (Cellular Genetic Programming for data classification) [15] to

create a population of predictors. However, instead of choosing, like BoostCGPC, from each

subpopulation the individual having the best fitness, it finds k groups of individuals similar with

respect to a similarity measure by employing the clustering algorithm k-means and then takes

the individual of each cluster having the best fitness. Before giving a detailed outline of the

approach proposed, a brief review of the CGPC and k-means methods is provided.

3.1 The CGPC algorithm

Genetic programming can be used to inductively generate a GP classifier as a decision tree for

the task of data classification [21]. Decision trees, in fact, can be interpreted as composition of

functions where the function set is the set of attribute tests and the terminal set are the classes.

The function set can be obtained by converting each attribute into an attribute-test function. For

each attribute A, if A1, . . . An are the possible values A can assume, the corresponding attribute-

test function fA has arity n and if the value of A is Ai then fA(A1, . . . An) = Ai. When a tuple

has to be evaluated, the function at the root of the tree tests the corresponding attribute and then

executes the argument that outcomes from the test. If the argument is a terminal, then the class

name for that tuple is returned, otherwise the new function is executed. Suppose to have a data

set with two class labels X and Y , and attribute set {A(a1, a2, a3), B(b1, b2), C(c1, c2), D(d1, d2)},

where ai, 1 ≤ i ≤ 3, bj , cj , dj , j = 1, 2 is the set of possible values A, B, C, D respectively can

assume. Then the terminal set is T ={X, Y } and the function set F = { fA(a1, a2, a3), fB(b1, b2),

fC(c1, c2), fD(d1, d2)}. Figure 1 shows a simple decision tree to decide if a tuple belongs to either

6

(a)

Figure 1: An example of decision tree with Terminal set T ={X, Y } and Function set F = {
fA(a1, a2, a3), fB(b1, b2), fC(c1, c2), fD(d1, d2)}

the class X or Y . For example, if a tuple has the value of the attribute A equal to a1 and that

of C equal to c1, then it is classified as X. Note that the nodes are labelled directly with the

name of the attributes instead of the name of the associated function, for simplicity reasons. To

evaluate the accuracy of the decision tree, the fraction of tuples classified into the correct class

is computed. The fitness function [21] is defined as the number of training examples classified

into the correct class. The CGPC algorithm used for data classification is described in figure 2.

CGPC adopts a cellular model of GP [27]. In the cellular model each individual has a spatial

location, a small neighborhood and interacts only within its neighborhood. The main difference

in a cellular GP, with respect to a panmictic algorithm, is its decentralized selection mechanism

and the genetic operators (crossover, mutation) adopted. Cellular models of GP have been used

to solve complex problems more accurately and with a minor number of iterations. Although

fundamental theory is still an open research line, they have empirically reported as being useful

in maintaining diversity, and promoting slow diffusion of solutions through the grid. Part of

their behavior is due to a lower selection pressure compared with that of panmictic GP.

CGPC generates a classifier as follows. At the beginning, for each cell, a random individual

is generated (step 3) and its fitness is evaluated (step 4). The fitness is the number of training

examples classified in the correct class. Then, at each generation, every tree undergoes one of

the genetic operators (reproduction (step 19), crossover (steps 9-13), mutation (steps 15-17))

depending on the probability test. If crossover is applied, the mate of the current individual is

7

1. Let pc, pm be crossover and mutation probability
2. for each point i in grid do in parallel

3. generate a random individual hi

4. evaluate the fitness of hi

5. end parallel for

6. while not MaxNumberOfGeneration do

7. for each point i in grid do in parallel

8. generate a random probability p
9. if (p < pc)
10. select the cell j, in the neighborhood of i,

such that hj has the best fitness
11. produce the offspring by crossing hi and hj

12. evaluate the fitness of the offsprings
13. replace hi with the best of the two offsprings
14. else

15. if (p < pm + pc) then

16. mutate the individual
17. evaluate the fitness of the new hi

18. else

19. copy the current individual in the population
20. end if

21. end if

22.end parallel for

23.end while

Figure 2: The algorithm CGPC.

selected as the neighbor having the best fitness, and the offspring is generated. The current tree

is then replaced by the best of the two offsprings if the fitness of the latter is better than that of

the former. After the execution of the number of generations defined by the user, the individual

with the best fitness represents the classifier.

3.2 The k-means algorithm for clustering classification trees

The algorithm k-means [13] is a well known clustering method that partitions a set of objects

into k groups so that the intracluster similarity is high but the intercluster similarity is low.

Cluster similarity is measured with respect to the mean value of the objects in a cluster, which

can be considered as the cluster’s center. The algorithm first randomly selects k objects, and

assigns the remaining objects to the most similar cluster, where similarity is computed as the

distance between the object and the center of the cluster. After that, the new mean values of

8

the clusters are computed and this process is repeated until the criterion function converges.

Typically, the squared-error criterion is used, defined as E =
∑k

i=1

∑
p∈Ci

dist(p, mi)
2, where E

is the sum of square error for all the objects, dist is a distance measure, generally the Euclidean

distance, p is an object, and mi is the mean of cluster Ci. Both p and mi are multidimensional

objects.

In order to apply the k-means algorithm to a population of trees, it is necessary to specify

the concept of distance between two individuals. To this end, we represent each classification

tree h by a couple (f, e), where f is its fitness value and e is its distance from the empty tree

Φ, considered as the origin tree. This representation allows to take into account both the the

concepts of phenotypic (i.e. based on fitness) and genotypic (i.e. based on the syntactical

structure of individuals) diversity of the tree population [8]. The metric adopted to measure the

structural distance between two genetic trees is that introduced by Ekárt and Németh [14].

The distance between two trees h1 and h2 is calculated in three steps: (1) h1 and h2 are

overlapped at the root node and the process is applied recursively starting from the leftmost

subtrees. (2) For each pair of nodes at matching positions, the difference of their codes (possibly

raised to an exponent) is computed. (3) The differences computed in the previous step are

combined in a weighted sum.

Formally, the distance of two trees h1 and h2 with roots R1 and R2 is defined as:

dist(h1, h2) = d(R1, R2) +
1

H

˙m∑

i=1

dist(childi(R1), childi(R2))

where: d(R1, R2) = (|c(R1)− c(R2)|)
z, c is a coding function c : {T ∪F} → N that assigns a

numeric code to each node of the tree, childi(Y) is the ith of the m possible children of a generic

node Y , if i ≤ m, or the empty tree otherwise. The constant H is used to give different weights

to nodes belonging to different levels and z is a constant such that z ∈ N .

For the example data set of the previous section an encoding could be: c(A)=1, c(B)=2,

c(C) = 3, c(D)=4, c(X)=5, c(Y)=6.

Figure 3 shows two trees h1 (figure 3(a)) and h2 (figure 3(b)) with the weighted coding

of each node, and their overlapping (figure 3(c)). Corresponding nodes are enclosed in the

9

rectangular boxes. The distance between h1 and h2, fixed H = 4 and z = 1, is computed as

follows: dist(h1, h2) = (| 1 − 1 |) + (| 3

4
− 2

4
| + | 5

4
− 5

4
| + | 4

4
− 6

4
|) + (| 5

16
− 5

16
| + | 6

16
− 6

16
|

+ | 5

16
− 0 | + | 6

16
− 0 |) = 1.31

When computing the distance between a tree h and the empty tree Φ, dist(h, Φ) gives simply

a weighted sum of the codes associated with the attributes appearing in the tree.

Once for each tree the couple (f, e) has been computed, since both f and e are numbers,

the k-means algorithm employs the Euclidean distance to the tree population by using this two

dimensional representation.

(a) (b)

(c)

Figure 3: Two example trees ((a) and (b)) and the overlapped tree (c) to compute their distance.

3.3 The distributed ClustBoostCGPC algorithm to build GP ensemble

ClustBoostCGPC is a new ensemble learning algorithm for constructing GP ensembles. The

idea is to incorporate different GP classifiers, each trained on different parts or aspects of the

training set, so that the ensemble can better learn from the whole training data. ClustBoostCGPC

applies the boosting technique in a distributed hybrid model of parallel GP and uses a clustering-

10

based selective algorithm to maintain the diversity of the ensemble by choosing in each popula-

tion the most accurate predictors of each group.

Our approach aims at emphasizing the cooperation among the individuals of the population

(classifiers) using a hybrid model of parallel GP. It combines the island and cellular models of

GP to enhance accuracy and to reduce performance fluctuation of the programs produced by

GP. We used a hybrid model essentially for two reasons. First, the island model represents the

best distributed implementation of GP that makes use of the domain decomposition technique.

Second, the cellular model in each island allows the generation of classifiers with better accuracy

and reduced tree size.

The island model is based on subpopulations created by dividing the original population into

disjunctive subsets of individuals, usually of the same size. Each subpopulation is assigned to

an island and a standard (panmictic) GP algorithm is executed on it. Occasionally, migration

process between subpopulations is carried out after a fixed number of generations. The hybrid

model modifies the island model by substituting the standard GP algorithm with a cellular GP

algorithm [16]. The introduction of the cellular approach improves the exploration capabilities

of the algorithm because of a lower selection pressure that promotes a slow diffusion of solutions

through the grid. In our model we use the CGPC algorithm in each island. Each island operates

in parallel on a subset of the tuples of the training set. The training and combination of the

individual classifiers are carried together in the same learning process by a cooperative approach.

Our model is based on the coevolution of different subpopulations of classifiers and a migration

process that transfers asynchronously individuals among subpopulations.

In order to improve the prediction accuracy achieved by an ensemble, we need to ensure

accuracy of classifiers and diversity among them. Although GP does not require any change

in a training data to generate individuals of different behaviors, in [17] it is showed that GP

enhanced with a boosting technique improves both the prediction accuracy and the running

time with respect to the standard GP. ClustBoostCGPC combines the boosting method and

the distributed hybrid model of GP to iteratively build an ensemble of classification trees through

a fixed number of rounds.

11

The selection, at each round, of classifiers satisfying both high diversity and accuracy re-

quirements, is a difficult optimization task. To this end in ClustBoostCGPC we applied a

method that gradually achieves diversity and accuracy. First, we employ the k-means clustering

algorithm to divide all individuals of each subpopulation into groups (clusters) according to

similarity of the classifiers. Then, the most accurate individual in each group, i.e. that having

the best fitness value, is selected.

A more formal description of the algorithm, in pseudo-code, is shown in figure 4. Let a

network of P nodes be given, each having a training set Sj of size nj . At the beginning, for

every node Nj , j = 1, . . . , P , a subpopulation Qj is initialized with random individuals and

the weights of the training instances are set to 1/nj (steps 1-4). Each subpopulation Qj is

evolved for a fixed number of generations (step 7) and trained on its local training set Sj by

running a copy of the CGPC algorithm (figure 2). After that, the evolved population of trees is

clustered by using the k-means algorithm [13] and k groups of individuals are determined (step

8). For each group, the tree having the best fitness is chosen as representative of the cluster and

output as the hypothesis computed. Then the k individuals of each subpopulation are exchanged

among the P nodes (step 9) and constitute the ensemble of predictors used to determine the

weights of the examples for the next round. The error ǫt is computed by summing the weights

of the misclassified tuples (steps 10-12). The weights for the next trial (step 15) are obtained

by multiplying the weight of the correctly classified examples by avg beta, that is the mean of

the βt = ǫt/(1 − ǫt) values (steps 13-14) of the k weak hypotheses. Since avg beta is less than

1, “easy” examples (i.e. already correctly classified) get a lower weight, while “hard” examples,

that tend to be misclassified, get higher weights. The boosted classifier gives the class label y

that maximizes the sum of the weights of the weak hypotheses predicting that label, where the

weight is defined as ln(1/βt) (step 20). Note that higher the weight of a weak hypothesis, lower

the misclassification error rate of the corresponding classifier.

We implemented ClustBoostCGPC using a distributed infrastructure and a distributed

framework to run GP. The software architecture of ClustBoostCGPC is illustrated in figure 5.

We used dCAGE (distributed Cellular Genetic Programming System) a distributed envi-

12

Given a network constituted by P nodes, each having a data set Sj of size nj

1. For j = 1, 2, . . ., P (for each island in parallel)
2. Initialize the weights w1

i = 1

nj
for i = 1, . . . , nj ,

where nj is the number of training examples on each node j.
3. Initialize the subpopulation Qj , for j = 1, . . . , P with random individuals
4. end parallel for

5. For t = 1,2,3, . . ., T
6. For j = 1, 2, . . ., P (for each island in parallel)
7. Train CGPC on the partition Sj using a weighted

fitness according to the distribution wt

8. Run the k-means algorithm to compute
k weak hypotheses hj1,t....hjk,t : X → Y

9. Exchange the hypotheses hjc,t c = 1, . . . , k among the P nodes
10. if arg max hjc,t(xi) 6= yi

11. Djc
= 1 else Djc

= 0
12. Compute the error ǫt

jc
=

∑n

i=1
wt

iDic

13. Set βt
jc

= ǫt
jc

/(1 − ǫt
jc

),

14. Compute avg betat
j =

∑
k

c=1
βt

jc

k

15. Update the weights wt+1

i = avg betat
j × wt

i if hj,t(xi) = yi

16. end parallel for

17. end for t

18. output the hypothesis :

20. hf = arg max (
∑T

t=1

∑P

j=1

∑k

c=1
log(1

βt
jc

)Dt
jc

)

21. where Dt
jc

= 1 if hjc,t(xi) = yi, 0 otherwise

Figure 4: The algorithm ClustBoostCGPC

Figure 5: Software architecture of ClustBoostCGPC.

ronment to run genetic programs by an island model, which is an extension of [16]. dCage has

been modified to support the hybrid variation of the classic island model.

13

In the new implementation, to take advantage of the cellular model of GP, the islands are

evolved independently using the CGPC algorithm, and the outermost individuals are asyn-

chronously exchanged. The training sets Si, i = 1, . . . , P assigned to each of the P islands can

be thought as portions of the overall data set. The size of each subpopulation Qi, i = 1, . . . , P

present on a node, must be greater than a threshold determined from the granularity supported

by the processor. Each node, using a training set Si and a subpopulation Qi, implements a clas-

sifier process CGPCi as learning algorithm and generates a population of classifiers. dCAGE

distributes the evolutionary processes (islands) that implement the classification models over

the network nodes using a configuration file that contains the configuration of the distributed

system. dCAGE implements the hybrid model as a collection of cooperative autonomous is-

lands running on the various hosts within an heterogeneous network that works as a peer-to-peer

system. The MPI (Message Passed Interface) library is used to allow cooperation among the

islands. Each island, employed as a peer, is identical to each other. At each round, a collector

process collects the GP classifiers from the other nodes, handling the fusion of the results on

behalf of the other peers, and redistributes the GP ensemble for future predictions to all the

network nodes.

The configuration of the structure of the processors is based on a ring topology and a classifier

process is assigned to each. During the boosting rounds, each classifier process maintains the

local vector of the weights that directly reflect the prediction accuracy on that site. At every

boosting round the hypotheses generated by each of these classifiers (CGPCi in Figure 5) are

clustered by employing the standard k-means algorithm. Then, the most accurate classifier in

each group is selected to be included in the ensemble of predictors.

Next, the ensemble built so far is broadcasted to each classifier process to locally recalculate

the new vector of the weights and a copy of the ensemble is stored in a repository. After the

execution of the fixed number T of boosting rounds, the classifiers stored in the repository are

used to evaluate the accuracy of the classification algorithm.

It is worth to point out that, though ClustBoostCGPC and BoostCGPC build an ensemble

of classifiers for the task of data classification, there are some main differences between the two

14

approaches.

ClustBoostCGPC is a distributed algorithm that runs the boosting technique on a hybrid

model of parallel GP by combining the island and cellular models. Thus it assumes that each

node has its own population and its own data set and that the classification algorithm CGPC

be trained on the local data there contained.

On the other hand, BoostCGPC implements the boosting technique on a parallel computer

by adopting the parallel cellular model of GP . In this case, if the number of processors at

disposal to run the algorithm is P , the population is partitioned in P subpopulations, one for

each processor, and P subsets of tuples are created by uniformly sampling instances from the

overall training set with replacement.

Another main difference regards the individuals selected for participating to the ensemble.

After a number of generations, BoostCGPC chooses the predictor with the best fitness.

ClustBoostCGPC, instead, applies the clustering algorithm to the population of trees and

picks the individual of each cluster having the best fitness. Though this policy reveals to be

beneficial for the accuracy of the method, as experimental results show, it introduces a memory

overhead. The next section suggests the use of pruning strategies that partially overcome this

problem.

4 Reducing the size of the ensemble

A drawback of the method proposed, and of the ensemble methods in general, is the large amount

of memory required to maintain the classifiers. In our case, the size of the ensemble increases as

the number of clusters and the number of nodes of the network increase. Thus we could ask if it

it possible to discard some of the predictors generated and still obtain comparable accuracy. This

approach is well known in the literature and it is called pruning [24] or thinning [3] the ensemble.

Pruning the ensemble requires a strategy to choose the classifiers to remove. There is a general

agreement that the predictors forming the ensemble have to be both diverse and accurate. A

pruning policy thus identifies the most similar classifiers and removes them. The concept of

similarity in this context plays a central role. In the Machine Learning community diversity

15

means that the predictors have to make independent classification errors, i.e. they disagree

with each other. A disagreement measure used in [24] is, for example, the κ statistics [1]. In the

Genetic Programming community the concept of diversity is perceived in a different way [7, 9]. In

particular it reflects the structural diversity of the genetic programs in a generation [14]. In this

paper we adopt different diversity measures to choose the trees to prune. In the experimental

results we compare them and we show that the ensemble can be quite substantially pruned

without increasing misclassification errors; indeed, up to 30% of pruning, ensemble accuracy

increases.

The first two diversity measures used are the pairwise distance between two trees (denoted

pairwise), and the distance of a tree from the empty tree (denoted origin), introduced in

subsection 3.2.

The third measure is the κ statistics, defined as follows. Given two classifiers hi and hj ,

where hi, hj : X → Y, consider the following | Y | × | Y | contingency table M . For elements

a, b ∈ Y, define Ma,b to contain the number of examples x in the training set for which hi(x) = a

and hj(x) = b.

If hi and hj give identical classifications, all non-zero counts will appear along the diagonal.

If hi and hj are very different, then there should be a large number of counts off the diagonal.

Let

Θ1 =

∑|Y|
a=1 Ma,a

N

be the probability that two classifiers agree, where N is the size of the training set and | Y | is

the number of different classes. Let also

Θ2 =

|Y|∑

a=1

(

∑|Y|
b=1

Ma,b

N

∑|Y|
b=1

Mb,a

N
)

be the probability that two classifiers agree by chance, given the observed counts in the table.

Then the κ measure of disagreement between classifiers hi and hj is defined as

κ(hi, hj) =
Θ1 − Θ2

1 − Θ2

16

Table 1: Data sets used in the experiments

Dataset Attr. Tuples Classes

Adult 14 48842 2

Census 41 299285 2

Covtype 54 581012 7

Mammography 10 11183 2

Phoneme 5 5404 2

Satimage 36 6435 6

Segment 19 2310 7

A value of κ = 0 implies that Θ1 = Θ2 and the two classifiers are considered different. A value

of κ = 1 implies that Θ1 = 1, which means that the two classifiers agree on each example.

Thus a pruning strategy first computes the κ, origin, and pairwise measures and then

chooses the predictors to eliminate in the following way.

If the origin measure is used, the predictors hi are ordered in increasing order of dist(hi, Φ)

and eliminated by starting with that having the highest value until the pruning percentage fixed

has been reached.

If the pairwise (κ) measure is adopted, the distance dist(hi, hj) (κ(hi, hj)) values are ordered

in increasing order. The pruning strategy eliminates the pairs (hi, hj) of classifiers having the

lowest value of dist(hi, hj) (the highest value of κ(hi, hj)), i. e. the more similar, considering

them in increasing order of dist (decreasing order of κ) until the pruning percentage fixed has

been reached.

5 Experimental Results

In this section ClustBoostCGPC and BoostCGPC are compared on 7 data sets. Two data

sets (Census and Covtype) are from the UCI KDD Archive1, three (Segment, Satimage, and

Adult) are taken from the UCI Machine Learning Repository 2, one (Phoneme) is from the

ELENA project 3, and one (Mammography) is a research data set used in [11]. The size and

1http://kdd.ics.uci.edu/
2http://www.ics.uci.edu/∼mlearn/MLRepository.html
3ftp.dice.ucl.ac.be in the directory pub/neural/ELENA/databases

17

Table 2: Main parameters used in the experiments

Name Value

max depth for new trees 6

max depth after crossover 17

max mutant depth 2

grow method RAMPED

selection method GROW

crossover func pt fraction 0.7

crossover any pt fraction 0.1

fitness prop repro fraction 0.1

parsimony factor 0

Table 3: Comparison of the misclassification error rate of BoostCGPC and ClustBoostCGPC
with different ensemble sizes.

Dataset BoostCGPC BoostCGPC BoostCGPC ClustBoostCGPC ClustBoostCGPC

100 classifiers 500 classifiers 1000 classifiers 500 classifiers 1000 classifiers

Adult 17.231 ± 0.164 16.29 ± 0.157 15.85 ± 0.164 14.749 ± 0.163 14.641 ± 0.161

Census 6.12 ± 0.045 5.76 ± 0.045 5.51 ± 0.046 4.695 ± 0.042 4.681 ± 0.041

Covtype 33.374 ± 0.468 32.64 ± 0.463 32.81 ± 0.455 30.85 ± 0.453 30.044 ± 0.442

Mammography 2.159 ± 0.099 1.89 ± 0.097 1.92 ± 0.097 1.309 ± 0.093 1.304 ± 0.091

Phoneme 19.121 ± 0.475 18.03 ± 0.460 18.38 ± 0.474 16.968 ± 0.462 16.918 ± 0.448

Satimage 21.398 ± 0.573 20.68 ± 0.566 20.83 ± 0.574 20.22 ± 0.552 20.185 ± 0.543

Segment 13.452 ± 0.421 13.01 ± 0.406 13.22 ± 0.428 12.127 ± 0.418 12.114 ± 0.417

class distribution of these data sets are described in table 1.

The experiments were performed using a network composed by 10 1.133 Ghz Pentium III

nodes having 2 Gbytes of Memory, interconnected over high-speed LAN connections.

All results were obtained by averaging over 50 runs by using 70% of the data sets for training

and the remaining 30% for testing. In order to do a fair comparison between ClustBoostCGPC,

and BoostCGPC we used a network of 10 nodes for both algorithms. The number T of rounds

was 10, population size 100 on each node, number of generations 100 (for a total number of

generations 100 × 10=1000), and number of clusters fixed for ClustBoostGPC 5 and 10. Thus

BoostCGPC generated 100 classifiers, while ClustBoostCGPC, in one run 500 predictors, and

in the other run 1000 predictors. However, the size of the ensembles for ClustBoostCGPC

is greater than that of BoostCGPC. To analyze how the former algorithm performs when the

18

Table 4: Comparison of the misclassification error rate of ClustBoostCGPC and C4.5, SVM,
and their boosted versions.

Dataset ClustBoostCGPC C4.5 BoostC4.5 SVM BoostSVM

Adult 14.749 15.3 15.1 16.4 16.8

Census 4.695 4.9 4.8 6.2 6.1

Covtype 30.850 17.2 17 - -

Mammography 1.309 1.7 1.8 1.8 1.8

Phoneme 16.968 20.9 20.4 17.7 17.5

Satimage 20.220 15.6 15.2 15.6 14.3

Segment 12.127 11.5 10.7 8.57 7.2

number of predictors in the ensemble is equal to that in the latter, when executing BoostCGPC,

we considered the first 5 and 10 fittest individuals from each subpopulation, at each round. In

this way we obtained other two ensembles of size 500 and 1000.

A main difference between ClustBoostCGPC and BoostCGPC regards the partitioning

of the training sets on the nodes of the network. ClustBoostCGPC runs on a distributed

environment where it is supposed that each node has its own data set. In order to simulate

this kind of situation, each data set has been equally partitioned among the 10 nodes. Thus

each node contains 1/10 of the training set. BoostCGPC runs on a parallel computer, thus

according to the sequential AdaBoost approach, it creates 10 subsets of tuples of size 1/10 the

overall training set by uniformly sampling instances with replacement. The parameters used for

the experiments are shown in table 2.

The main objectives of the experiments have been to investigate the influence of the clustering

approach on the accuracy when different number of clusters are chosen, and to analyze and

compare the pruning strategies described in the previous section.

Regarding the first objective, ClustBoostCGPC has been executed by fixing the number of

clusters to 5 and 10, thus by using an ensemble of 500 an 1000 predictors, and compared with

BoostCGPC, that uses an ensemble of 100, 500, and 1000 predictors, obtained as explained

above. Table 3 shows the classification errors of the two algorithms. The table shows that for all

the data sets the clustering strategy sensibly improves the accuracy of the method. For example,

on the Adult data set ClustBoostCGPC (5 clusters) obtains an error of 14.749 instead of 17.231,

19

16.29, 15.85 of BoostCGPC with ensemble size 100, 500, and 1000 respectively. The table points

out that the clustering approach is meaningful because the choice of the best individuals in the

clustered populations produces a much better result with respect to choosing either the best, or

the best five, or the best ten classification trees. However, as the table shows, augmenting the

number of clusters is no more beneficial because the reduction of the misclassification error rate

is minimal.

Table 4 compares ClustBoostCGPC (ensemble size 500) with the other well known classifi-

cations methods C4.5, SV M and their boosted versions. We used the implementations contained

in the WEKA [31] open source software available at http://www.cs.waikato.ac.nz/ml/weka/.

The table shows that ClustBoostCGPC outperforms the other approaches on four out of the

seven data sets. Regarding Covtype, the algorithms SV M and boosted SV M implemented in

WEKA were not able to give an answer because of the size of the data set.

Using an ensemble of 500 predictors instead of 100 needs a larger amount of memory to store

all the classifiers. Thus the improved accuracy is obtained at the cost of higher storage require-

ments. In the second set of experiments we show that the ensemble can be substantially pruned

without decreasing performance. To this end we considered the ensemble of 500 predictors and

we applied the pruning strategies described in the previous section.

Table 5 reports the results of the different pruning strategies for all the data sets. The

percentages of pruning experimented are 10%, 20%, 50%, and 80% of the ensemble. The table

reports in the column named Err the misclassification error rate of the ensemble pruned of the

percentage showed in the corresponding row. In column GainC the relative gain in percentage

of the pruned ensemble with respect to the complete ensemble generated by ClustBoostCGPC.

In column GainB the relative gain in percentage of the pruned ensemble with respect to the

ensemble generated by BoostCGPC. A positive value means that the misclassification error rate

is diminished, while a negative one that it has increased. To statistically validate the results,

we performed a two-tailed paired t-test at 95% confidence interval. The values in bold of the

columns Err highlight the percentage of training set needed by ClustBoostCGPC to obtain a

lower error, meaningful with respect to the statistical test.

20

Table 5: Error and gain of pruned ClustBoostCGPC with respect to unpruned ClustBoostCGPC
and unpruned BoostCGPC.

origin pairwise kappa
Err GainC GainB Err GainC GainB Err GainC GainB

10% 14.711 0.26% 14.62% 14.462 1.95% 16.07% 14.734 0.10% 14.49%
Adult 20% 14.971 -1.51% 13.12% 14.742 0.05% 14.44% 15.042 -1.99% 12.70%

50% 15.425 -4.58% 10.48% 16.032 -8.70% 6.96% 15.823 -7.28% 8.17%
80% 19.281 -30.73% -11.90% 22.469 -52.34% -30.40% 23.856 -61.74% -38.45%
10% 4.582 2.40% 25.13% 4.289 8.64% 29.92% 4.453 5.15% 27.24%

Census 20% 4.744 -1.04% 22.49% 4.706 -0.24% 23.10% 4.768 -1.56% 22.09%
50% 5.073 -8.06% 17.11% 4.944 -5.31% 19.22% 5.085 -8.32% 16.91%
80% 7.901 -68.30% -29.10% 7.542 -60.65% -23.24% 7.988 -70.15% -30.52%
10% 30.679 0.55% 8.08% 30.128 2.34% 9.73% 30.203 2.10% 9.50%

Covtype 20% 30.904 -0.18% 7.40% 30.355 1.60% 9.05% 30.800 0.16% 7.71%
50% 32.322 -4.77% 3.15% 30.952 -0.33% 7.26% 31.012 -0.53% 7.08%
80% 34.188 -10.82% -2.44% 33.681 -9.18% -0.92% 33.955 -10.06% -1.74%
10% 1.297 0.95% 39.93% 1.223 6.60% 43.35% 1.265 3.39% 41.41%

Mamm. 20% 1.385 -5.77% 35.85% 1.307 0.18% 39.46% 1.407 -7.45% 34.83%
50% 1.467 -12.04% 32.05% 1.421 -8.52% 34.18% 1.604 -22.50% 25.71%
80% 2.302 -75.81% -6.62% 2.208 -68.63% -2.27% 2.420 -84.82% -12.09%
10% 16.893 0.44% 11.65% 16.528 2.59% 13.56% 16.349 3.65% 14.50%

Phoneme 20% 17.185 -1.28% 10.13% 16.892 0.45% 11.66% 17.002 -0.20% 11.08%
50% 18.042 -6.33% 5.64% 18.312 -7.92% 4.23% 18.207 -7.30% 4.78%
80% 19.207 -13.20% -0.45% 20.209 -19.10% -5.69% 19.389 -14.27% -1.40%
10% 20.184 0.18% 5.67% 20.003 1.07% 6.52% 20.010 1.04% 6.49%

Satimage 20% 20.240 -0.10% 5.41% 20.081 0.69% 6.15% 20.120 0.49% 5.97%
50% 20.512 -1.44% 4.14% 20.958 -3.65% 2.06% 20.601 -1.88% 3.72%
80% 22.845 -12.98% -6.76% 22.696 -12.25% -6.07% 22.904 -13.27% -7.04%
10% 12.027 0.82% 10.59% 11.906 1.82% 11.49% 12.004 1.01% 10.76%

Segment 20% 12.209 -0.68% 9.24% 12.140 -0.11% 9.75% 12.233 -0.87% 9.06%
50% 12.638 -4.21% 6.05% 12.643 -4.25% 6.01% 12.901 -6.38% 4.10%
80% 16.467 -35.79% -22.41% 15.842 -30.63% -17.77% 15.068 -24.25% -12.01%

21

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 80 50 20 10

M
e
a
n

 p
e
rf

o
rm

a
n

c
e
 r

e
la

ti
v

e
 t

o
 u

n
p

ru
n

e
d

 B
o

o
st

C
G

P
C

Percentage of pruning

Origin
Pairwise

Kappa

Figure 6: Mean performance of pruned ClustBoostCGPC relative to unpruned ClustBoostCGPC
with different pruning percentages.

The table clearly shows that up to 50% of pruning, for all the data sets, independently

the pruning strategy used, the ensemble can be reduced and still have an error lower than

BoostCGPC (see column GainB). For example, the error obtained with the ensemble generated

by ClustBoostCGPC on the Census data set pruned of 50% with the pairwise measure is 4.944,

while that generated by BoostCGPC is 6.12, thus using the former approach gives a gain of

19.22%. It is worth noting that BoostCGPC with ensemble size 500 and 1000 obtains an

error of 5.76 and 5.51, respectively, which is higher than the pruned ensemble of 250 predictors.

Furthermore, pruning improves the performance of ClustBoostCGPC if 10% of the classifiers

are eliminated. Indeed the pairwise strategy, for almost all the data sets, allows the pruning

up to 20% of predictors and still decrease the misclassification error rate of ClustBoostCGPC.

The structural diversity used in GP thus gives better results than the behavioral diversity

employed in the Machine Learning community. This result could be explained by the observation

that structural diversity means that the classification trees have nodes labelled with different

attributes. As a consequence, the pruned ensemble is able to better generalize because of the

presence of independent predictors.

Finally, figures 6 and 7 shows the overall performances, averaged for all the data sets, in

terms of the relative gain. In particular, figure 6 displays the relative performance of each

22

 0.05

 0

-0.1

-0.2

-0.3

-0.4

 80 50 20 10

M
e
a
n

 p
e
rf

.
re

la
ti

v
e
 t

o
 u

n
p

ru
n

e
d

 C
lu

st
B

o
o

st
C

G
P

C

Percentage of pruning

Origin
Pairwise

Kappa

Figure 7: Mean performance of pruned ClustBoostCGPC relative to unpruned BoostCGPC
with different pruning percentages.

pruning strategy computed as the difference between the corresponding misclassification error

rate and that obtained by BoostCGPC divided by the gain, that is the difference in percentage

points between these errors. A value of 0 means that the pruned ensemble obtains the same

performance as BoostCGPC, while a value greater than 0 that the pruned ensemble performs

better than BoostCGPC. Figure 7 shows the same performance results compared with respect

to ClustBoostCGPC. These two figures summarizes the results of table 5 and clearly point out

that the pairwise strategy behaves better than the two others.

As already observed, table 5 points out that, independently the pruning strategy, the deletion

of 10% of trees enhance the accuracy of the method, while 20% of pruning is beneficial only

for pairwise and, as regards kappa, for some data sets. Thus we wanted to verify whether the

combination of the three strategies could produce better results than a single one. To this end

we deleted 20% of trees by choosing 10% of trees with one strategy and 10% with another, i.e.

we combined pairwise and kappa, pairwise and origin, and kappa and origin. Then we deleted

30% of predictors by picking 10% of trees with respect to each pruning strategy. Table 6 shows

the result of this experiment. In the table p stands for pairwise, k for kappa, and o for origin.

The results are very interesting. The deletion of 20% of trees from the ensemble by picking 10%

with a strategy and another 10% with another strategy generates an error lower than both the

23

Table 6: Error of ClustBoostCGPC with respect to different pruning strategies.

%. Prun. Strategy Adult Census Covtype Mamm. Phoneme Satimage Segment

No Prun. 14.749 4.695 30.850 1.309 16.968 20.220 12.127
pairwise 14.742 4.706 30.355 1.307 16.892 20.081 12.140
kappa 15.042 4.768 30.800 1.407 17.002 20.120 12.333

20% origin 14.971 4.744 30.904 1.385 17.185 20.240 12.209
p + k 14.777 4.421 30.224 1.275 16.265 20.116 12.115
p + o 14.726 4.588 30.205 1.287 16.564 20.049 12.122
k + o 14.911 4.602 30.414 1.295 16.686 20.101 12.205

pairwise 15.382 4.807 30.901 1.395 17.581 20.501 12.397
30% kappa 15.264 4.946 30.871 1.459 17.481 20.322 12.508

origin 15.152 4.885 31.12 1.407 17.433 20.389 12.359
p + o + k 15.001 4.863 30.797 1.319 16.393 20.170 12.271

ensemble pruned of 20% by applying one strategy and the unpruned ensemble. In particular

the error of the unpruned ensemble for the Census, Mammography, and Phoneme data sets

diminishes from 4.695, 1.309, 16.968 to 4.421, 1.275, 16.265 respectively when the pairwise and

kappa strategies are combined. For Adult, Covtype, Satimage, and Segment the reduction

from 14.749, 30.850, 20.220, 12.127 to 14.726, 30.205, 20.049, 12.122 respectively is obtained

by mixing the pairwise and origin strategies. An error decrease of the pruned ensemble with

respect to the unpruned one is attained also when 30% of classifiers are deleted by putting

together the three strategies for the Covtype, Phoneme, and Satimage data sets. In any case,

the elimination of 30% of predictors by mixing the kappa, pairwise, and origin strategies is

always better than using one of them at a time. These experiments indicate that the ensemble

techniques can achieve improved accuracy when good pruning policies are adopted.

6 Discussion

A boosting algorithm based on cellular genetic programming to build an ensemble of classifiers

has been presented. The approach proposed presents two main novelties. The first is the

application of a clustering algorithm to the subpopulations of the network nodes to build the

ensemble. The second is the utilization of pruning strategies to discard some of the predictors

but maintaining comparable accuracy. Both the ideas revealed successful since the former allows

24

the selection of the most diverse and fittest classification trees. The latter reduces the size of

the ensemble, improving the classification accuracy. Experiments on several data sets showed

that the choice of the fittest individual in the clustered populations produces a much better

result with respect to choosing either the fittest or more than one fittest classification trees.

ClustBoostCGPC has been compared with the state of the art classification algorithms C4.5

and SVM. Results showed that ClustBoostCGPC outperforms the other approaches on 4 out

of the 7 data sets used. It is worth to point out that the lower accuracy of ClustBoostCGPC

with respect to the other two methods on the three multi-class data sets is due to the fact

that ClustBoostCGPC implements the version AdaBoost.M1 of the AdaBoost algorithm. As

noted by Freund and Schapire [29], and experimented in [18], when the number of classes is

more than two, and this is the case of Covtype, Satimage, and Segment data sets, AdaBoost

needs a more sophisticated error measure that allows the weak learner focusing not only on the

hard-to-classify examples, but also on the incorrect labels which are the hardest to discriminate.

This error measure is implemented in the AdaBoost.M2 version.

Taking more predictors from each subpopulation contained on the nodes of the network

could give rise to criticisms because of the greater storage requirements necessary to maintain

the ensemble. We showed that by employing suitable pruning strategies it is possible to select

a subset of the classifiers without augmenting misclassification errors; indeed, up to 30% of

pruning, ensemble accuracy increases.

7 Conclusions

A distributed Boosting Cellular Genetic Programming Classifier has been presented. The

method evolves a population of trees for a fixed number of rounds and, after each round, it

chooses the predictors to include into the ensemble by applying a clustering algorithm to the

population of classifiers. Pruning strategies to the reduce ensemble size have also been experi-

mented. The method runs on a distributed environment based on a hybrid model that combines

the island and cellular models of parallel genetic programming. The combination of these two

models provides an effective implementation of distributed GP, and the generation of classifiers

25

with better accuracy and reduced tree size. A main advantage of the distributed architecture is

that it enables for flexibility, extensibility, and efficiency since each node of the network works

with its local data, and communicate with the other nodes, to obtain the results, only the local

model computed, but not the data. Furthermore, this architecture is particularly apt to deal

with the enormous amount of data that arrives in the form of continuous streams, generated

in many application domains, such as credit card transactional flows, telephone records, sensor

network data, network event logs. Future work aims at extending the ensemble approach to

process these new kinds of data.

References

[1] A. Agresti. Categorical Data Analysis. John Wiley and Sons,Inc., 1990.

[2] E. Alba and M. Tomassini. Parallelism and evolutionary algorithms. IEEE Transactions

on Evolutionary Computation, 6(5):443–462, 2002.

[3] R.E. Banfield, L.O. Hall, K.W. Bowyer, and W.P. Kegelmeyer. Ensembles diversity mea-

sures and their application to thinning. Information Fusion, 6:49–62, 2005.

[4] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algorithms:

Bagging, boosting, and variants. Machine Learning, (36):105–139, 1999.

[5] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[6] Leo Breiman. Arcing classifiers. Annals of Statistics, 26:801–824, 1998.

[7] Edmund Burke, Steven Gustafson, and Graham Kendall. A survey and analysis of diver-

sity measures in genetic programming. In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO 2002), pages 716–723. Morgan Kaufmann Publishers,

2002.

[8] Edmund Burke, Steven Gustafson, and Graham Kendall. Diversity in genetic programming:

an analysis of measures and correlation with fitness. IEEE Transaction on Evolutionary

Computation, 8(1):47–62, 2004.

26

[9] Edmund Burke, Steven Gustafson, Graham Kendall, and Natalio Krasnogor. Advanced

population diversity measures in genetic programming. In Parallel Problem Solving from

Nature - PPSN VII, number 2439 in Lecture Notes in Computer Science, LNCS, page 341

ff., Granada, Spain, 2002. Springer-Verlag.

[10] E. Cantú-Paz and C. Kamath. Inducing oblique decision trees with evolutionary algorithms.

IEEE Transaction on Evolutionary Computation, 7(1):54–68, February 2003.

[11] N. Chawla, T.E. Moore, W. Bowyer K, L.O. Hall, C. Springer, and P. Kegelmeyer. Bagging-

like effects for decision trees and neural nets in protein secondary structure prediction. In

BIOKDD01: Workshop on Data mining in Bioinformatics (SIGKDD 2001), 2001.

[12] Thomas G. Dietterich. An experimental comparison of three methods for costructing ensem-

bles of decision trees: Bagging, boosting, and randomization. Machine Learning, (40):139–

157, 2000.

[13] R.C. Dubes and A.K. Jain. Algorithms for Clustering Data. MIT Press, Prentice Hall,

1988.

[14] Anikó Ekárt and Sandor Z. Németh. Maintaining the diversity of genetic programs. Lecture

Notes in Computer Science, EuroGP 2002, 2278:162–171, 2002.

[15] G. Folino, C. Pizzuti, and G. Spezzano. A cellular genetic programming approach to

classification. In Proc. Of the Genetic and Evolutionary Computation Conference (GECCO

1999), pages 1015–1020, Orlando, Florida, July 1999. Morgan Kaufmann.

[16] G. Folino, C. Pizzuti, and G. Spezzano. A scalable cellular implementation of parallel ge-

netic programming. IEEE Transaction on Evolutionary Computation, 7(1):37–53, February

2003.

[17] G. Folino, C. Pizzuti, and G. Spezzano. Boosting technique for combining cellular gp classi-

fiers. In M. Keijzer, U. O’Reilly, S.M: Lucas, E. Costa, and T. Soule, editors, Proceedings of

the Seventh European Conference on Genetic Programming (EuroGP-2004), volume 3003

of LNCS, pages 47–56, Coimbra, Portugal, 2004. Springer Verlag.

27

[18] G. Folino, C. Pizzuti, and G. Spezzano. Gp ensembles for large-scale data classification.

IEEE Transaction on Evolutionary Computation, 10(5):604–616, October 2006.

[19] Y. Freund and R. Scapire. Experiments with a new boosting algorithm. In Proceedings of

the 13th Int. Conference on Machine Learning, pages 148–156, 1996.

[20] Hitoshi Iba. Bagging, boosting, and bloating in genetic programming. In Proc. Of the

Genetic and Evolutionary Computation Conference GECCO99, pages 1053–1060, Orlando,

Florida, July 1999. Morgan Kaufmann.

[21] J. R. Koza. Genetic Programming: On the Programming of Computers by means of Natural

Selection. MIT Press, Cambridge, MA, 1992.

[22] L.I. Kuncheva and C.J. Whitaker. Diversity measures in classifier ensembles. Machine

Learning, (51):181–207, 2003.

[23] W.B. Langdon and B.F. Buxton. Genetic programming for combining classifiers. In Proc.

Of the Genetic and Evolutionary Computation Conference GECCO’2001, pages 66–73, San

Francisco, CA, July 2001. Morgan Kaufmann.

[24] D.D. Margineantu and T.G. Dietterich. Pruning adaptive boosting. In Proceedings of the

International Conference on Machine Learning, pages 211–218, 1997.

[25] D. P. Pal and J. Das. A novel approach to design classifiers using genetic programming.

IEEE Transaction on Evolutionary Computation, 8(2):183196, February 2004.

[26] T.K. Paul, Y. Hasegawa, and H. Iba. Classification of gene espression data by majority

voting genetic programmingt classifier. In IEEE World Congress on Computational Intel-

ligence, pages 8690–8697, Vancouver,BC,Canada, 2006. IEEE.

[27] C.C. Pettey. Diffusion (cellular) models. In David B. Fogel Thomas Bäck and Zbigniew

Michalewicz, editors, Handbook of Evolutionary Computation, pages C6.4:1–6. Institute of

Physics Publishing and Oxford University Press, Bristol, New York, 1997.

[28] R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.

28

[29] R. E. Schapire. Boosting a weak learning by maiority. Information and Computation,

121(2):256–285, 1996.

[30] Terence Soule. Voting teams: A cooperative approach to non-typical problems using ge-

netic programming. In Proc. Of the Genetic and Evolutionary Computation Conference

GECCO99, pages 916–922, Orlando, Florida, July 1999. Morgan Kaufmann.

[31] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools and tech-

niques. Morgan Kaufmann, 2nd Edition.

29

