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Abstract
Intrusion detection tools have largely benefitted from the usage of supervised classification methods developed in the field
of data mining. However, the data produced by modern system/network logs pose many problems, such as the streaming and
non-stationary nature of such data, their volume and velocity, and the presence of imbalanced classes. Classifier ensembles
look a valid solution for this scenario, owing to their flexibility and scalability. In particular, data-driven schemes for combining
the predictions of multiple classifiers have been shown superior to traditional fixed aggregation criteria (e.g., predictions’
averaging and weighted voting). In intrusion detection settings, however, such schemes must be devised in an efficient way,
since (part of) the ensemble may need to be re-trained frequently. A novel ensemble-based framework is proposed here
for the online intrusion detection, where the ensemble is updated through an incremental stream-oriented learning scheme,
correspondingly to the detection of concept drifts. Differently from mainstream ensemble-based approaches in the field, our
proposal relies on deriving, though an efficient genetic programming (GP) method, an expressive kind of combiner function
defined in terms of (non-trainable) aggregation functions. This approach is supported by a system architecture,which integrates
different kinds of functionalities, ranging from the drift detection, to the induction and replacement of base classifiers, up
to the distributed computation of GP-based combiners. Experiments on both artificial and real-life datasets confirmed the
validity of the approach.

Keywords Data streams · Ensemble learning · Genetic programming · Intrusion detection · Cybersecurity

1 Introduction

Cyber-security issues are attracting increasing interest in
disparate fields, owing to the severe threats that cyber
crime is posing to citizens, companies, and governments
(CERT Australia 2012). Intrusion detection tools constitute
a valuable solution in this context, for timely recognizing
malicious behaviors, and eventually protecting information
systems, sensitive information and physical/monetary assets.
Basically, a Intrusion Detection System (IDS) is a sys-
tem devoted to automatically detect suspicious activities,
witnessing unauthorized accesses (intrusions) to a com-
puter system/network, based on a continuous analysis of
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different kinds of log data (e.g., network traffic’s logs, appli-
cation/system logs, etc.).

Verymanyproposals have appeared in the last twodecades
in the literature that leverage classification-oriented datamin-
ing techniques for detecting and analyzing intrusions, based
on these data. However, such a classification problem poses
many challenging issues, which primarily include the big-
data nature of the input data (which tend to be generated in
large volumes and at fast paces), the non-stationarity of their
distribution (due to the fact that attack patterns tend to evolve
over the time and, hence, lead to frequent concept drifts), as
well as class imbalance (intrusions are usually far less fre-
quent than normal behaviors).

While many traditional data mining solutions fail to han-
dle all these issues adequately, ensemble-based classification
approaches look a valid solution for this challenging sce-
nario, owing to their flexibility and scalability, as confirmed
by the wide diffusion of ensemble-based intrusion detection
techniques (Folino and Sabatino 2016). In fact, this mainly
descends from the fact that ensemble schemes are easy to
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implement efficiently, on top of parallel/distributed architec-
tures, and that ensemble models can be trained to pay more
attention to important/rarer attack classes.

A delicate crucial aspect in the design of an ensemble-
classification model pertains the combiner function, i.e., the
functionused to fuse thepredictions of the (base) classifiers in
the ensemble. Learning-based combiners, capable of adapt-
ing the combination logics to the data at hand, were shown
to surpass the traditional strategy of simply resorting to a
fixed (non-trainable) aggregation criterion, such as averag-
ing the base models’ predictions, or performing some kind of
weighted voting. However, when applied to (non-stationary)
intrusion detection data, such an approach might turn to be
unfeasible, seeing as (part of) the ensemble might need to be
re-trained frequently.

In this work, a comprehensive ensemble-based frame-
work for the online classification of fast non-stationary
data streams (like those arising in typical cybersecurity
contexts) is proposed, which leverages a Genetic Program-
ming (GP) method for automatically deriving an expressive
combiner function, defined in terms of non-trainable aggre-
gation sub-functions. The framework, named Evolutionary
Ensemble-based Stream Classification for Intrusion Detec-
tion (or simply E2SC4I D for the sake of conciseness),
has been devised to timely adapt to concept drifts by
suitably updating the ensemble model (in terms of both
its underlying base classifiers and its combiner function),
according to a continuous learning-and-prediction approach.
This approach is supported by an ad hoc system architecture
that integrates different kinds of functionalities, ranging from
drift-detection, to the induction/replacement of base mod-
els, to the efficient GP-based computation of the ensemble’s
combiner function. Notably, using non-trainable functions
as building blocks for generating candidate solutions (i.e.,
possible combiner functions for the ensemble) allows us to
evaluate the fitness of these solutions efficiently, without
needing to perform costly training steps. Combined with the
exploitation of a distributed GP platform (Folino et al. 2003),
this property makes the proposed framework particularly apt
to deal with non-stationary data, even in contexts where strict
processing-time requirements exist.

Our proposal is technically different from previous appro
aches to employing evolutionary/GP techniques for the dis-
covery of ensemble-based classifiers. In fact, many of these
approaches have only focused on the construction or selec-
tion of the base classifiers (de Oliveira et al. 2009; Folino
et al. 2008). On the other hand, most of the few proposals
(De Stefano et al. 2014; Sylvester and Chawla 2005; Acosta-
Mendoza et al. 2014) addressing the generation of expressive
combiner functions suffer from two serious limitations: either
(i) assume the data distribution to be stationary, or (ii) cannot
adapt to concept drifts in a sufficiently timelymanner, as they

need to evaluate the fitness of the generated individuals over
the training dataset.

We pinpoint that this manuscript is a revised and extended
version of a paper (Folino et al. 2019) published at con-
ference NUMTA 2019, and it builds up on some ideas and
basic solutions presented in Folino et al. (2016b). Differently
from these two (short) papers, the continuous learning-
and-classify approach proposed here (in Sect. 4) has been
devised to work in a fully online and incremental fash-
ion, on a per-instance basis, with the help of novel ad
hoc data structures (supporting drift-detection and classifier-
induction tasks). Moreover, compared to these two previous
works, a more systematic presentation of related research
in the field of ensemble-based intrusion detection and of
background concepts is provided here, aswell as amore com-
prehensive experimental analysis (including wider ranges of
competitors, evaluationmetrics, drift-detectionmethods, and
classifier-replacement strategies).

The rest of the paper is structured as follows. After pro-
viding an overview of related work in Sect. 2, some basic
concepts and notation are introduced in 3, in order to have a
convenient formal basis for presenting our online classifica-
tion framework. The latter is described in detail in Sect. 4,
which contains an algorithmic description of the proposed
learning-and-prediction stream processing strategy. The con-
ceptual system architecture adopted to implement the frame-
work is illustrated in Sect. 5, which also provides somemajor
implementation-related details. Section 6 discusses experi-
ments performed on several benchmark datasets, which offer
empirical evidence for our proposal’s validity. Final remarks
and future work are discussed in Sect. 7.

2 Related works

Machine learning and dataminingmethodswerewidely used
to support the development of cybersecurity solutions, espe-
cially in intrusion detection systems (Buczak and Guven
2016). However, traditional methods of this kind tend to suf-
fer from serious limitations, which make them unsuitable for
many real-life cybersecurity applications: they cannot handle
concept drifts, they cannot work in an incremental way, and
they cannot handle big volumes of data and streaming data.

A more promising area of research for this field concerns
information fusion and ensemble-based approaches (Folino
and Sabatino 2016). Indeed, classification techniques lever-
aging these approaches tend to work well not only when big
data are supplied as input, but also when few training data
are available. In addition, they can easily exploit the advan-
tages of distributed environments such as parallel, GPGPU
architectures, and P2P and Cloud computing architectures.
Finally, they can easily model different abstractions or parts
of a network, i.e., some models can be trained on some
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parts or on some levels of the network and finally combined
together, to ensure better predictions.

Differently from our approach, most of these techniques
employ simple combiner functions or weighting schemes
for merging the predictions of multiple base models in the
ensemble. For instance, Gao et al. (2019) propose an adap-
tive ensemble learning model employing several traditional
base learners such as DT, SVM, logistic regression, k-NN
and DNN. By using statistical tests, the five most promis-
ing classifiers are chosen and exploited to accurately tune
the base model parameters. Then, a weighted voting schema
is used to provide the final classification. The experimenta-
tion shows an important improvement in terms of detection
accuracy.

Similar limitations affect the two works (Perdisci et al.
2009; Borji 2007) that introduced the idea of selecting the
combiner function from a predefined range of non-trainable
functions. In particular, Perdisci et al. (2009) proposed to
discover an ensemble of SVMs to detect intrusion attacks
in a software network. To this end, a clustering-based algo-
rithm is first exploited to reduce the dimension of the
feature space. Then, one SVM for each representation of
the payload is trained in order to model the normal net-
work traffic. The combination logics of the ensemble is
defined as a non-trainable function, chosen among com-
mon aggregation functions (returning the average, product,
minimum and maximum of the base models’ predictions,
respectively). Experiments performed on the DARPA and
GATECHdatasets showed this approach to achieve good per-
formances, especially in terms of small false-positive rate.

A heterogeneous ensemble of classifiers (discovered with
the help of ANN, SVM, decision tree and k-NN methods)
were used in Borji (2007) in order to identify attacks in
the DARPA dataset. In addition to the classical average or
majority-voting functions, a further kind of combiner func-
tion was considered there, which rely on estimating the
probabilities that a pattern assigned to a given data class actu-
ally belongs to that class or to other classes.

The rest of this section focuses on works that have used
ensemble-based methods together with evolutionary algo-
rithms, similarly to our proposal. Notice, however, that in
many of these works evolutionary algorithms were only
employed for the construction/selection of the base classi-
fiers (de Oliveira et al. 2009; Folino et al. 2008) and not, as
in our technique, for generating the combiner function.

Sindhu et al. (2012) proposed to adopt an ensemble of
shallow neural networks and compared their approach with
the AdaBoost algorithm and with other approaches. In order
to select the optimal subset of the features from the dataset,
a genetic algorithm was used. Experiments performed on
the KDD’99 dataset showed that the proposed ensemble
performs better than the AdaBoost algorithm and a neural
network-based ensemble with respect to different metrics,

i.e., true-positive and false-positive rate, precision, recall and
F-measure.

In Folino et al. (2016a), the authors introduced a meta-
ensemble based on a non-trainable function and evolved
by an evolutionary-based algorithm to classify intrusions.
Experiments, performed on the KDD and on the ISCX
dataset, demonstrate the goodness of the approach to cope
with unbalanced classes, by using specialized classifiers. In
addition, the good performance was achieved in terms of low
false-alarm rate; however, the approach suffers from some
limitations in recognizing all the kinds of attack.

In Kumar (2020), different Pareto-optimal sets of base
models are combined through some majority methods, and
evaluated on the well-known NSL_KDD and ISCX-2012
datasets. The approach has the advantage of providing clas-
sification trade-offs for cybersecurity administrators and
managers. However, the training phase and the genera-
tion of the weights of the combiner functions (based on
multi-objective optimization and neural networks) are com-
putationally expensive.

InAburomman andReaz (2017), particle swarmoptimiza-
tion (PSO) methods were employed to generate the weights
of the combiner function for 12 classifiers. Different ways
to generate the weights were empirically compared on five
randomly selected subsets of theKDD99 datasets, eventually
demonstrating that the newmethod gives better accuracy than
weighted majority algorithm (WMA).

3 Background and formal framework

This section introduces some basic concepts and notation
that concern: (i) the kinds of data and classification mod-
els considered in our work (Sect. 3.1); (ii) ensemble-based
classification and the specific combining strategy, relying
on “non-trainable” combiners, that underlies our framework
(Sect. 3.2). The section also presents (in Sect. 3.3) back-
ground concepts regarding Genetic Programming (GP), and
the specific GP tool exploited in the prototypal implementa-
tion of our approach for finding an optimal combiner.

3.1 Data tuples and classifiers

Conceptually, a data tuple (a.k.a. instance) is as pair (x, y),
where x is a feature vector, storing m distinguished data
fields, and y is a label representing the class of x , chosen
among a given set Ω = 〈ω1, ω2 ..., ωc〉 of class labels. For
the sake of presentation, let us assume that all feature vectors
belong to R

m , and that an additional fictitious class label ⊥
is used to denote unlabelled data tuples, i.e., any tuple for
which the actual associated class label is unknown.

A classifier (or predictor) h is a model encoding a (clas-
sification) function of the form h : R

m → [0, 1]c, which
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maps any feature vector x ∈ R
m to a vector of c support

degrees, one for each of the classes that are referred to in Ω .
Specifically, the j-th component of the resulting vector h(x),
denoted hereinafter by h(x)[ j], represents the degree of sup-
port assigned by h to the hypothesis that x belongs to the
j-th class ω j , for any j ∈ [1 . . . c]—the larger the support,
the more likely x is estimated to belong to ω j . Without loss
of generality, we can assume that all the c degrees, returned
by any classifier h, are in the interval [0, 1] and that they
all sum up to 1, i.e., h(x)[ j] ∈ [0, 1] for j ∈ [1..c] and∑c

j=1 h(x)[ j] = 1.
A classifier can be discovered from a given (training) set

S = {(xi , yi ) | i = 1, . . . , N and y j �=⊥} by resorting to
one of the many standard (propositional) classifier-induction
algorithms available in the literature, and then used to predict
the class of novel (unlabelled) tuples.

3.2 Ensembles and non-trainable functions

Ensemble methods permit to combine multiple (heteroge-
neous or homogeneous) classifiers, in order to obtain a more
expressive/robust scheme for classifying unseen instances. In
practice, after a number of classifiers have been built (using
training data), for each new unlabelled feature vector x , the
predictions of the different classifiers for x are combined
so that a common decision can be eventually taken on the
class of x . Different methods can be adopted to generate the
classifiers and to combine the classifiers in the ensemble,
i.e., the same learning algorithm can be trained on differ-
ent datasets or/and different algorithms can be trained on the
same dataset. In this work, different algorithms are used on
the same dataset to build the different classifiers/models.

A different approach is followed by the popular boosting
method introduced by Schapire (1990) and Freund (1995);
to boost the performance of any “weak” learning algorithm
(i.e., an algorithm that “generates classifiers which need only
be a little bit better than random guessing” (Schapire 1995)),
themethod adaptively changes the distribution of the training
set depending on how difficult each example is to classify.
This approachwas successfully applied to a large number and
variety of datasets. However, it has the drawback of needing
to repeat the training phase for a number of rounds, which
could be too time-consuming on large datasets.

The applications and data characterizing domains like
cybersecurity pose strong efficiency requirements, which
do not permit to re-train the base classifiers. On the con-
trary, non-boosting-based ensemble strategies do not need
any further phase of training, when the predictions of the
base classifiers can be combined without using the origi-
nal training set. The majority vote is a classic example of
this kind of combiner function. Some types of combiner,
known as non-trainable combiners (Kuncheva 2004), have
no extra parameters that need to be trained and consequently,

the ensemble is ready for operation as soon as the base clas-
sifiers are trained.

Let us define next somemore basic concepts and notation,
in order to ease the presentation of our approach.

In an ensemble consisting of g classifiers, every time a
new feature vector is to be classified, a collection of g × c
support degrees are returned for x by the classifiers, which
need to be integrated in some way. The following definition
introduces a concept for representing such a collection of
classification degrees uniformly and conveniently.

Definition 1 (Decision Profile) Let x ∈ R
m be a feature vec-

tor, L = h1, . . . , hg be a list of g classifiers, all trained over
c given classes labels Ω = ω1, . . . , ωc. Then the decision
profile H L(x) of L for x is amatrix containing all the degrees
of support that are assigned, relatively to x , by classifiers of
L to the classes (referred to) in Ω:

HL(x) =
⎡

⎢
⎣

HL
1,1(x) ... HL

1, j (x) ... HL
1,c(x)

HL
i,1(x) ... HL

i, j (x) ... HL
i,c(x)

HL
g,1(x) ... HL

g, j (x) ... HL
g,c(x)

⎤

⎥
⎦

where the element HL
i, j (x) is the degree of support hi (x)[ j]

assigned to j-th class by the i-th classifier. �
Let us now introduce a concept concerning the combina-

tion of base classifiers’ predictions.

Definition 2 (Combiner) Let L = h1, . . . , hg be a list of g
classifiers, trained over the class labels Ω = ω1, . . . , ωc.
Then, a combiner for L is a function F : [0, 1]g×c → [0, 1]c
that returns an overall vector of support degrees for from
those stored (per row) in any decision profile HL(x) returned
by L , for some x ∈ R

m , by specifically deriving the support
degree of the j-th class from the values in the j-th column
of HL(x). By composing L and F , an (ensemble) classifier
μL,F : Rm → [0, 1]c can be defined, which maps any fea-
ture vector x ∈ R

m to F(HL(x)). The j-th component of
μL,F (x), denoted as μL,F (x)[ j], represents the combined
support degree of class ω j for x . �
As an instance, a simple instantiation of the combiner func-
tion F consists in averaging, for each class, the predictions
of the base classifiers, so that the support degree of the j-th
class is computed as:

∑g
i=1 Hi, j (x).

Clearly, when using the ensemble-like classifier μL,F as
a hard classifier (as done in our framework), the class label
that will be eventually assigned to a feature vector x is the
label ω j∗ that gets the highest support on x , i.e., such that
j∗ = argmax j {μL,F (x)[ j]}.

3.3 Genetic programming basics and the CAGE tool

Genetic Programming (GP) is a sub-class of Evolutionary
Algorithms, inspired by the evolutionary theories of Darwin,
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Fig. 1 An example of GP crossover (left) and mutation (right). In
GP crossover two random subtrees of the parents are selected and
swapped and generate two new individuals. Here, the function set con-

tains Avg,+,− and ×, and the terminal set contains problem variables
and some random numbers. In GP mutation, a random subtree of the
parent is selected and substituted with a new random subtree

that it is meant to find solutions to a computational problem
by evolving a population of solutions (individuals or chromo-
somes) for a number of rounds (generations). The individuals
of a standard GP approaches are trees that encode some kind
of program. The internal nodes of the tree are functions and
the leaves are typically the problem variables, constants or
random numbers.

The initial population of GP is a set of trees generated
randomly. During the evolutionary process, the individuals
are evolved until an optimal solution (or a good approxima-
tion of it) is found, or a maximum number of generations
is reached. The evolution is driven by a function of fitness,
which is chosen for the particular problem to be solved and
represents the goodness of a solution/individual.

Similarly to other evolutionary algorithms, for each gen-
eration, two genetic operators (crossover and mutation) are
performedon some individuals, chosen randomlyon thebasis
of their fitness: individuals with better fitness have more
chance to be chosen. The crossover operator swaps two ran-
dom subtrees of two individuals (parents) and generates two
new individuals (children), whereas the mutation operator,
which is performed on a single individual, transforms a ran-
dom subtree and generates a new individual. Figure 1 shows
an example of the crossover and mutation operator.

The newly generated individuals are added to the pop-
ulations and compete with other individuals based on their
fitness, i.e., the better individuals have more chance to sur-
vive. This process leads to find better solutions along the
evolution of the process.

The CAGE tool In order to evolve the combiner function of
an ensemble, our framework employs the CellulAr GEnetic
programming (CAGE) tool (Folino et al. 2003) as its under-
lying GP engine.

This particular choice was mainly taken for efficiency and
scalability reasons. The tool, based on the fine-grained cellu-
lar model, can run indeed on top of both distributed-memory
parallel computers and distributed environments.

The overall population of the GP algorithm is partitioned
into subpopulations of the same size. Each subpopulation can
be assigned to one processor running a standard (panmictic)
GP algorithm. Occasionally, migration process between sub-
populations is carried out after a fixed number of generations.
For example, the n best individuals from one subpopulation
are copied into the other subpopulations, thus allowing the
exchange of genetic information between populations. The
main difference between a cellularGPmodel and the panmic-
tic come from the fact that the former employs a decentralized
neighbor-based selection mechanism for evolving a pop-
ulation. Indeed, in the cellular model each individual is
associated with a spatial location and a small neighborhood,
and it can only interact with its neighbors.

In the prototypal implementation of our framework, the
logics underlying the generation process and the genetic
operators are the same as in the classical GP formulation
introduced by Koza (1992), and summarized before.
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Fig. 2 An example combiner function FE that could be generated with
our approach for the classifier ensemble E

4 Proposed framework: stream-processing
scheme

This section describes our approach to the ensemble-based
classification of streaming intrusion detection data, which is
meant to support a continuous learning-and-prediction pro-
cessing flow over such data.

The proposed streamprocessingflow is illustrated in detail
in Sect. 4.2 in the form of an algorithm, named Evolutionary
Ensemble-based Stream Classification for Intrusion Detec-
tion (or simply E2SC4I D for short).

For the sake of readability, in Sect. 4.1 we introduce some
major data structures that are used in our approach, in order
to maintain updated high-level information on both the data
distribution and the discovered classification models.

4.1 Data structures

Ensemble model and associated GP-based combiner The
proposed ID framework relies on processing a stream D =
d0, d1, . . . of log data, containing both labelled and unla-
belled data tuples, with the help of an ensemble model
E = 〈BE , FE 〉, which consists of two components:

– a list BE of base classifiers, say h1, . . . , hg , such that
each h j encodes a function mapping any data tuple d of
D to the space of the reference intrusion-related classes
(cf. the notation introduced in Sect. 3);

– a combiner FE , taking the form of a GP tree (described
later on), which allows for mapping the attribute vector
x of any tuple d ∈ D to a vector μBE ,FE (x) ∈ [0, 1]c
of overall predictions, based on the predictions (namely,
h1(x), . . . , hg(x)) returned for x by the base classifiers
in BE (see Definition 2 for details).

The combiner function FE in the proposed ensemble model
is encoded as a GP tree, where each leaf corresponds to

one of the base classifiers in BE , while the other nodes may
be associated with non-trainable aggregation functions cho-
sen among the following ones: average, weighted average,
maximum and median. The choice of using these particular
non-trainable functions descends from the fact that they were
widely shown to work well in practice (see, e.g., the exten-
sive experimental analysis discussed in Kuncheva (2004)1).
For the sake of concreteness, Fig. 2 shows pictorially one
of the combiner functions generated by our approach in the
experimentation described in Sect. 6.

In more detail, in any GP-tree combiner, every leafw rep-
resents the general result that would be obtained by applying
some of the base classifiers (i.e., the one associated with w,
chosen among those in BE ) to a generic feature vector x .
Let us employ w(x) to denote the result of this operation,
which is a vector of per-class support degrees, and w(x)[ j]
to denote the j-th component of this vector (i.e., the support
degree assigned to the j-th class).

Every non-leaf node v represents the result of the (pos-
sibly partial) computation encoded by the subtree rooted in
v, which consists in applying the aggregation function asso-
ciated with v to the results returned by the children of v,
in a recursive fashion (until arriving at a leaf w, which is
computed as specified before). Let v(x) denote the result
produced by the sub-tree rooted in v when (its leaves are)
applied to a generic feature vector x . Then, v(x) is computed
by aggregating the results returned by the children of v by
using the aggregation function associated with v itself. For
example, for a non-leaf node v associated with the average
function, it is: v(x)[ j] = 1

|children(v)|
∑

v′∈children(v) v′(x)[ j],
for j ∈ {1, . . . , c}. Similar definitions apply to the other
aggregation functions (namely, median, weighted average,
and maximum). In particular, the weighted average function
is a variant of the average function where each base classi-
fier is associated with a weight, previously computed on the
training set.
Drift detection model An important kind of auxiliary data
structure that is employed in our stream processing approach
is a drift-detection model. Such a model constitutes indeed
one of the main parameters of algorithm E2SC4I D, which
could be instantiated with any of the techniques available in
the literature for the detection of concept drifts. In our frame-
work, a drift detection modelDM is meant to encapsulate the
statistics and computation logics that are exploited to detect
a concept drift, and to provide an abstract Boolean method
DM .update&check(x, y, ŷ), which performs the following
actions: (i) updating the internal statistics of the model to
accommodate any newly arrived labelled tuple (x, y) and

1 The only aggregation function, among those tested in Kuncheva
(2004), that has not been integrated in our framework is the product,
which was actually shown to not perform well enough in the general
case of multi-class classification settings.
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Fig. 3 Algorithm E2SC4I D (pseudo code)

the class ŷ predicted for it;2 and (ii) checking whether there
has been a drift in the recent portion of data stream ending
with this tuple. The value returned by this method is true
iff such a drift has been estimated to occur.

Any drift-detectionmodel DM is also expected to provide
amethod DM .ini tiali ze for initializing themodel, based on
a given set of tuples (to be passed as input to the method).

Clearly, the actual implementation of model DM depends
on the particular drift-detection strategy chosen by the user.
More details on this respect are provided in Sect. 5.3, which
briefly illustrates the alternative drift-detection models that
have been integrated in the current implementation of our
framework,

4.2 Algorithm E2SC4ID

Both the base classifiers and the ensemble model E are built
through a continuous learning-and-prediction strategy,where
incoming labelled tuples are used as training examples, and
unlabelled ones are classified with E as soon as they arrive.
This data-processing scheme is described in Fig. 3 in the
form of an algorithm, taking the same name, i.e. E2SC4I D,
as the entire framework proposed in this work.

The algorithm takes, as its main input, a data stream D
providing a continuous flow of data tuples (to be classified
or used as training examples). All these tuples are assumed to
be pairs of the form (x, y), where y can represent either the

2 In fact, our MOA-based implementations of such models only takes
account for the class labels, and disregard the feature vector x .

actual class of the feature vector x (in case this class is known
a priori) or the special symbol ⊥ (in the case the class of x is
unknown, and it must be assigned by the model). A further
auxiliary output stream O is taken as input, which is just
meant to represent a “classified version” of D. Stream O is
indeed populated by the algorithm, which inserts a modified
version (x, ŷ) of each data tuple (x, y) in D, as soon as a
prediction ŷ has been made for x .

Basically, the algorithm incrementally discovers an ensem-
ble model E = 〈BE , FE 〉 (of the form described in
Sect. 4.1) from the input stream D. As explained in detail
later on, this stream is split conceptually into a sequence
W0,W1, . . . ,Wi ,Wi+1, . . . of non-overlapping windows,
named hereinafter chunks, which all contain the same fixed
number n of labelled tuples.3 More precisely, denoting by
DLab = dLab

0 , dLab
1 , . . . the “filtered” version of D featur-

ing only the labelled tuples of D, each chunk Wi consists
of the following n (temporally contiguous) labelled tuples:
{dLab

j | j ∈ N
0, j ≥ i × n, j < (i + 1) × n}. Such a tem-

poral segmentation of the input data stream serves the goal
of building up a series of training sets Wi for the induction
of new base classifiers, such that: (i) each of them is large
enough (and hence representative enough of the behavior of
system in the respective time window), but (ii) it is unlikely
that many of these training sets are too heterogeneous inter-
nally (i.e., feature each too many different attack patterns).

3 The choice of using fixed-size windows is mainly for the sake of
concreteness and of presentation. In fact, our approach can be easily
extended to deal with other data-segmentation schemes.
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Fig. 4 The incremental stream-processing procedure processTuple used in algorithm E2SC4I D (pseudo code)

The algorithm consists of two parts, which encode respec-
tively: (I) the initialization of the ensemble model E and of
other auxiliary variables (Steps a1–a4); and (II) a tuple-wise
stream-processing scheme, which relies on iteratively call-
ing an ad hoc auxiliary procedure, named processTuple,
on each of the tuples appearing in the input stream D (Steps
a5–a10).

These two phases are illustrated in Sect. 4.2.1 (which also
describes the parameters and variables used by the algo-
rithm), and 4.2.2 (which also describes the core procedure
processTuple), respectively.

4.2.1 Parameters, variables and initialization phase

The algorithm is assumed to be provided with the follow-
ing parameters, complementing the two data streams D and
O: (i) the list learners of classifier-induction algorithms to
be used for training new base classifiers (in the prototype
implementation of our approach, these algorithms were cho-
sen among those available in the MOA tool, as discussed
in Sect. 5.4); (ii) the maximal number l of base classifiers
to be selected at each learning session; (iii) the maximal
number maxClass of base classifiers that can be in the
ensemble; (iv) the size n fixed for all the chunks; (v) a drift-
detection model DM (of the kind described in Sect. 4.1, and
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equipped with suitable implementations of the incremental
drift-detection method DM .update&check and of method
DM .ini tiali ze); and (vi) a temporally ordered list Initializ-
erData of labelled tuples for initializing both models E and
DM .

Notice that in the experiments described in Sect. 6, we
always set parameter InitializerData as to contain the first
chunk (i.e., the oldest n tuples) of the dataset at hand.

The first part of the algorithm (Steps a1–a4) is devoted
to initialize the ensemble model E , the drift-detection model
DM , and two auxiliary variables, which all need to be passed
in each of the calls of procedure processTuple that will
be made in the rest of the algorithm (Steps a5–a10). These
auxiliary variables are: (i) a Boolean variable drift, used in
procedure processTuple to flag a detected occurrence of
concept drift, which is simply initialized to false; and (ii) a
list Buffer of tuples, devoted to maintain the (labelled) tuples
of the current data chunk (ordered according their respective
times of arrival), which is initially set as empty.

Both E and DM are initialized by exploiting the contents
of parameter InitializerData (actually copied in Buffer in the
algorithm, just for the sakeof presentation). In particular, case
of the ensemble model E , this is specifically performed by
running the Steps 11–18 of the procedure processTuple
shown in Fig. 4 (see Sect. 4.2.2 for a detailed description of
these steps). The initialization of the DM depends instead
on the chosen kind of drift-detection model (and on its asso-
ciated implementation of method DM .ini tiali ze).

4.2.2 Tuple-wise processing via procedure
processTuple

The second part of Algorithm E2SC4ID (Steps a5–a10 in
Fig. 3) amounts to applying procedure processTuple
iteratively to each of the tuples (x, y) that appear in the input
stream D. Even though such a stream-processing loop might
go on forever, we here assume that it can be stopped by the
user or it ends naturally when no more tuples are expected to
arrive from D.

Essentially, every executionof procedureprocessTuple
takes as input the current tuple (x, y) that needs to be pro-
cessed, together with the variables E, DM, Buffer and drift
and the constant parameters (namely, learners, l, maxC and
n) described in the previous subsection.

As a result, the procedure returns the label ŷ of the class
predicted for x , which is used as the class label of x within
the modified version of the tuple that is inserted in the aux-
iliary stream O (Step a8 in Fig. 3). Every invocation of the
procedure processTuple also returns an updated version
of the variables E, DM, Buffer and drift, in order to allow
the algorithm to support an incremental processing/learning
scheme, by keeping (across different executions of the pro-
cedure) updated information on both the raw data processed

and the (drift-detection and ensemble-classification) models
discovered.

The computation steps of procedureprocessTuple are
summarized in Fig. 4. The former four steps of the procedure
are devoted to predict a class label ŷ for x , which will be
eventually returned as output by the procedure in the final
step. This is done by: (i) first computing, for x , the deci-
sion profile HBE of the base classifiers currently associated
with the ensemble E (Step 2); then (ii) deriving an overall
support-degree vector μBE ,FE from HBE with the help of
the combiner FE of the ensemble E (Step 2); and (iii) finally
selecting the class achieving the highest (combined) support
degree (Step 3).

Steps 6–20, executed only when x is a labelled tuple, are
meant to update the global parameters Buffer and DM as
to take account for the information conveyed by x and its
associated class label y, as well as to possibly update the
flag drift and the ensemble E in case a concept drift has
been detected by DM (through the invocation of its method
update&check in Step 7). In fact, in such a case the update
of the ensemble E is carried out in Steps 10–18 only when
a sufficient number (namely, n) of training tuples have been
collected in Buffer; otherwise this operation is postponed to
a subsequent execution of the procedure (i.e., as soon as the
size of Buffer has grown to n), while leaving the flag drift
unchanged.

Let us now focus on the case when Buffer contains all the
n tuples of a chunk, say Wi , and, in addition, drift = true,
meaning that a concept drift has been detected by DM either
at the current execution of the procedure or in a previous
execution (where there were no sufficient tuples to complete
the chunk). In such a case, the (labelled) tuples of Buffer
are randomly split into two equally sized sets: a training
subset Train and a validation set Valid. The former set
is used to induce a number of novel base classifiers by using
the classifier-induction procedure listed in learners. Among
these newly discovered classifiers, the l ones having the best
accuracy (on the same training set Train) are chosen and
added to list BE of the ensemble. In case this list has grown
over the maximum allowed size maxC, maxC − |BE | base
classifiers are removed from the list, so that the size constraint
for the ensemble is satisfied. The combination of the insertion
and removal operations, performed throughout Steps 13–16
in such a case, can be regarded as a replacement operation,
where a selection of the base classifiers of E (among those
present in BE before Step 13) is substituted with “better”
classifiers among those that have been trained on the cur-
rent chunk Wi . More details on this respect can be found
in Sect. 5.2, which specifically illustrates three alternative
replacement strategies that have been integrated in the cur-
rent prototype implementation of the framework.

At this point, a novel GP-tree combiner FE is derived
for E , in Steps 17–18, by running a GP procedure, named
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combineGPcombiner, that evolves a population of GP-
trees, and selects an individual that allows the ensemble to
maximize its classification accuracy over the tuples ofValid.
Indeed, as explained in more detail in Sect. 5.1, the fitness
adopted in this procedure to test each candidate combiner T
is defined in terms of the classification errors that T makes
over the labelled tuples in Valid.

For the sake of efficiency, in Step 17 the procedure pre-
liminary applies the base classifiers of E to all the tuples
in Valid, and stores the resulting tuple-wise vectors of per-
class support degrees into a listDP of decision profiles (with
a distinct decision profile for each validation tuple). This
way, it is not necessary to re-compute of all these support
degrees for every candidate GP-tree combiner T generated
in Step 18. Indeed, in order to evaluated the fitness of such a
combiner T it is sufficient to compare the ground-truth class
label y′ of each tuple (x ′, y′) in Valid with the class that T
eventually predicts for x ′ by combining the predictions of the
base classifiers (already stored in DS). Further details on the
actual implementation of function combineGPcombiner
are given in Sect. 5.1.

Remark The combiner function FE that is returned by
function computeGPcombiner may well encode a com-
bination scheme that only uses a subset of the base classifiers
in BE , as clarified in Sect. 5.1. This allows us to possibly
operate a more careful (fitness-driven) selection of the base
classifiers than the preliminary coarse-grain greedy selec-
tion that was performed in Step 15, mainly for the sake of
computational efficiency (owing to the fact that reducing the
number of base classifiers to be combined, allows function
combineGPcombiner to focus on a smaller search space).

5 Proposed framework: system architecture

This section is devoted to present the conceptual system
architecture that has been adopted to implement the pro-
posed framework, in order to eventually enable for a concrete
continuous application of algorithm E2SC4I D (defined in
Fig. 3) to a stream of real-life intrusion detection data.

This architecture, sketched in Fig. 5. features several func-
tionalmodules that are in charge of supporting themain kinds
of data-stream processing tasks involved in the approach,
which primarily include: the detection of concept drifts, the
incremental chunk-wise update of a classifier ensemble, the
application of the classifier ensemble to new data tuples, and
the detection and handling of (either real or presumed) intru-
sion attacks.

The system ingests a stream of data coming, in a contin-
uous fashion, from different sources, such as network traffic
logs (e.g., coming from a network’s router or interface), sys-
tem logs, application logs. In order to turn such a stream of

data into the form of a series of (labelled/unlabelled) tuples
considered in our framework, some data pre-processingmod-
ule need to be put into place, e.g., supporting some ad hoc
formatting, filtering, and feature engineering/selection tasks.
This module is not shown in the figure, where the data stream
is assumed to consist of (pre-processed) tuples. Clearly, the
implementation of such a module strongly depends on the
data source and the application domain. As a matter of fact,
the current version of our prototype system includes pre-
processing functionalities specifically designed for the case
of network traffic data in the standard pcap (packet capture)
format.

The rest of this section is devoted to illustrate the different
modules of the proposed ensemble-based IDS:

1. Module Combiner Generation, which is devoted to gen-
erate a new combiner for the ensemble, by suitably
implementing the procedure computeGPcombiner of
algorithm E2SC4I D (see Fig. 3). This module, which is
based upon the GP tool CAGE, is described in detail in
Sect. 5.1.

2. Module Classifier Replacement, which implements the
logics for selecting the “victim” base classifiers, among
those forming the current ensemble, that will be replaced
with newly discovered classifiers. In general, such a selec-
tion could be performed on the basis of accuracy and/or
redundancy/diversity criteria. Details on the replacement
methods implemented in our prototype system are pre-
sented in Sect. 5.2.

3. Module Drift Detection, which is in charge of carrying
out an incremental real-time analysis of the data stream’s
distribution, and possibly detect relevant changes that wit-
ness a recent occurrence of a concept drift. The module
implements different Drift-Detection models (in order
to instantiate parameter DM of algorithm E2SC4I D),
which allow for incrementally extracting and analyzing
aggregated statistics supporting the detection of concept
drifts. More details on this respect are given in Sect. 5.3,
which describes the three drift-detection models that have
been integrated in the prototype system.

4. Module Classifier Induction, which is responsible for
discovering novel base classifiers from the current data
chunk, in order be possibly insert an optimal subset of
them into classifier ensemble. To this end, the module
implements a number of machine-learning algorithms for
supervised classification, which are listed in Sect. 5.4.

The remainingmodule in the figure, namelyClassification
& Alert Generation, is devoted to classify every incoming
unlabelled tuple, using the ensemble model E , and to gen-
erate and register an alert whenever an intrusion attack is
recognized, based on the result of this classification.
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Fig. 5 System Architecture. Please notice that the input data are
assumed to be already put into the form of tuples, which are all depicted
as small cubes. For the sake of presentation, it is assumed that a drift
has been detected correspondingly to the current tuple (i.e., the right-

most cube), and that a chunk (formed by labelled tuples arrived before)
is available for updating the ensemble model. Some objects refer the
names (in italics) of related variables of algorithm E2SC4I D

5.1 Combiner generation

As described in Sect. 4, the revision of the classifier ensem-
ble E (which is at the basis of our approach, and is triggered
by drift-detection events) is performed in three phases: (i)
discovering novel base classifiers from the most recent data
chunk; (ii) extending the list BE of the base classifiers com-
posing E with a selection of classifiers discovered in the
previous phase, while possibly discarding some older ele-
ments of BE according to a replacement strategy; and (iii)
generating a new, optimal, combiner FE for E through a GP-
based evolutionary computation scheme. In what follows we
only focus on the last phase, which is directly supported
by module Combiner Generation, and refer the reader to
Sects. 5.4 and 5.2 for amore detailed discussion of the former
two phases.

In order to find an optimal combiner FE for the updated
collection BE of base classifiers, the module implements a
GP search procedure, which is briefly described below.

Basically, every individual in this search, representing a
candidate combiner function for the ensemble E , is encoded
as a GP tree of the form described in Sect. 4.1. Let us recall
that, in such a tree, each leaf corresponds to one of the base
classifiers in BE , while any internal node may be associ-
atedwith a non-trainable aggregation function chosen among
average, weighted average, maximum and median. In order
to limit the representation complexity of the candidate GP-
tree solutions to be explored (and thus restrict the search

space), the number of children of every non-leaf node v (i.e.,
the arity of the aggregation function associated with v) can
be only chosen in the set {2, 3, 5}.

A randomly created initial population of such GP trees is
made evolve with the help of a distributed instantiation of the
GP tool CAGE (see Sect. 3.3 (Folino et al. 2003)), according
to the accuracy-based fitness measure described below.
Fitness measure: definition and (efficient) computation The
quality of each candidate GP tree T , generated throughout
the evolutionary search procedure, is evaluated with a fit-
ness score that measures the accuracy that would be obtained
when using T to combine the predictions returned, over the
tuples of the validation set Valid, by base classifiers in BE .
This fitness score can be computed as the opposite of the
ratio between the tuples of Valid that are misclassified and
the total number of tuples in Valid. As a safer alternative for
the case unbalanced datasets (which are not so rare in intru-
sion detection scenarios), a weighted scheme can be adopted
to compute the fitness of a GP tree T , where (i) each mis-
classified tuple belonging to a “small’/minority class ω is
associatedwith aweight that coincideswith the ratio between
the total number of tuples in Valid and the number of Valid’s
tuples that belong to class ω (in case this weight exceeds
the threshold value of 10, it is turned into 10, in order to pre-
vent generating excessively high rescaling factors); while (ii)
each misclassified tuple belonging to a “big”/majority class
is associated with a fixed unitary weight, as in the standard
case of balanced datasets.
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Let us recall that, since T is composed of non-trainable
aggregation functions, no extra computations are needed on
other training data. Moreover, the pre-computation of the
decision profiles of all the tuples in Valid allows for com-
puting the fitness score of any candidate T in a fast way.

5.2 Model replacement

As specified before, in our framework the ensemble model is
bound to contain a fixed numberm of base classifiers at most
(cf. Fig. 3). In order to adhere to this constraint, the Model
Replacement module implements three alternative strategies
for selecting a number of base classifiers to be removed, and
thus making room for newly generated classifiers: Random,
Best and Wheel, respectively.

Before describing these strategies, let us recall that in our
approach, once detecting a concept drift, a collection New-
Models of novel base classifiers is discovered from the most
recent data chunk, by only using a subset Train of the data
chunk (consisting of a randomly sampled half of the labelled
tuple in the chunk), while keeping the remaining example
tuples in a validation set Valid that is mainly used to search
a novel combiner for the ensemble.

Let us denote as Bold
E the base classifiers that composed

the ensemble model E before building the new classifiers
NewModels. When a drift is detected, all the base classifiers
(be them new classifiers ofNewModels or existing classifiers
of Bold

E ) are trained again on the novel data chunk.
The threemodel replacement strategies are briefly explained

in what follows:

– The Random strategy replaces 1/3 of the base classifiers
in Bold

E with newly generated ones. The classifiers are
removed on the basis of their insertion time: older classi-
fiers are removed first. These classifiers are then replaced
with a subset of those inNewModels, chosen on the basis
of their accuracy on the validation set (clearly,more accu-
rate classifiers are preferred).

– The Best strategy works removes a 1/3 of the base classi-
fiers in Bold

E , as in the previous case, but selecting those
with the worst accuracy scores over the validation set.
These classifiers are replaced with the best ones in New-
Models, still in terms of accuracy over the validation set.

– The Wheel strategy works according to a roulette-wheel
mechanism. Then, 1/3 of these classifiers is chosen for
removal through a sampling process where pi = fi∑N

j=1 f j
is used as the probability of selecting the i-th classifier,
and fi is the accuracy of this classifier on the validation
set.

5.3 Drift detection

This module analyses the data stream in search of possible
changes in the distribution of the target classes (i.e., normal
behaviors vs attacks), representing evidence for a concept
drift. For the sake of efficiency (and suitability for an online
ID setting), such analysis relies on the incremental compu-
tation of statistics for every new incoming data window Di .

Since in this work we were not particularly interested in
developing a new drift detection strategy, in the implemen-
tation of our approach we resorted to existing drift-detection
models, leveraging their respective implementations in the
MOA framework. Specifically, based on the thorough experi-
mental analysis of different drift-detection models discussed
in Gonçalves et al. (2014), we decided to equip the Drift
Detection module with three alternative models, which
obtained the lowest number of false alarms while maintain-
ing a good overall accuracy: DDM (looking for changes
in the classification error’s rate), STEPD (based on statis-
tically comparing groups recent tuples and of past tuples)
and ADWIN (looking for distribution changes in sliding win-
dowsof variable size).We refer to the above-mentionedpaper
(Gonçalves et al. 2014) for a comprehensive comparison of
different drift-detectionmethods.More details on thesemod-
els are provided below:

– STEPD (“Statistical Test of Equal Proportions”) (Nishida
and Yamauchi 2007) is based on computing two statistics
on the performances of a given classification model C :
the overall (mean) accuracy of C from the beginning of
the stream and the (mean) accuracy of C on a test win-
dow W . These two measures are compared statistically
according to a Chi-square test: if the difference between
them is lower than a given significance level, then the
null hypothesis that the average accuracy of C has not
changed is rejected, and a concept drift is detected. In
more detail, three parameters are used in STEPD: the
size of the time window expressed as number of data
instances, and the significance levels αw and αd . STEPD
stores the instances in its memory when P < αw and
it resets all the variables (i.e., its memory, the window
accuracy, etc.) when P < αd .

– DDM (“Drift Detection Method”) (Gama et al. 2004)
relies on using a binomial distribution to model the
probability of a random variable representing the num-
ber of classification errors made by a given classifier
C in a sample of n examples. Correspondingly to each
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Table 1 Main characteristics of the ISCX IDS dataset

Day Description Size of the pcap file (GB) Number of Flows Percentage of Attacks

Day 1 Normal traffic without malicious
activities

16.1 359,673 0.000

Day 2 Normal traffic with some malicious
activities

4.22 134,752 1.545

Day 3 Infiltrating the network from the inside
& Normal traffic

3.95 153,409 6.395

Day 4 HTTP Denial of Service & Normal
traffic

6.85 178,825 1.855

Day 5 Distributed Denial of Service using an
IRC Botnet

23.4 554,659 6.686

Day 6 Normal traffic without malicious
activities

17.6 505,057 0.000

Day 7 Brute Force SSH + Normal activities 12.3 344,245 1.435

Table 2 Comparison of the different replacement strategies for the three drift detection algorithms (AWIN, DDM and STEPD) using the AUC and
AUC-PR metrics for the Hyperplane dataset using a windows of 1k

Strategy ADWIN DDM STEPD

AUC AUC-PR AUC AUC-PR AUC AUC-PR

Best 0.923 ± 0.010 0.918 ± 0.014 0.931 ± 0.009 0.919 ± 0.018 0.928 ± 0.014 0.914 ± 0.015

Random 0.926 ± 0.012 0.919 ± 0.015 0.933 ± 0.015 0.922 ± 0.018 0.923 ± 0.014 0.910 ± 0.016

Wheel 0.939 ± 0.009 0.926 ± 0.011 0.941 ± 0.010 0.928 ± 0.016 0.931 ± 0.012 0.920 ± 0.014

The best strategy is highlighted in bold, provided that it is significantly better than the others according to Nemenyi post hoc test

Table 3 Comparison of the different replacement strategies for the three drift detection algorithms (AWIN, DDM and STEPD) using the AUC and
AUC-PR metrics for the ISCX dataset using a windows of 1k

Strategy ADWIN DDM STEPD

AUC AUC-PR AUC AUC-PR AUC AUC-PR

Best 0.851 ± 0.040 0.796 ± 0.033 0.868 ± 0.004 0.797 ± 0.013 0.788 ± 0.010 0.734 ± 0.011

Random 0.872 ± 0.005 0.813 ± 0.011 0.872 ± 0.026 0.814 ± 0.030 0.794 ± 0.023 0.743 ± 0.029

Wheel 0.874 ± 0.012 0.827 ± 0.013 0.892 ± 0.028 0.822 ± 0.039 0.797 ± 0.011 0.746 ± 0.007

The best strategy is highlighted in bold, provided that it is significantly better than the others according to Nemenyi post hoc test

Table 4 Comparison of the different replacement strategies for the three drift detection algorithms (AWIN, DDM and STEPD) using the AUC and
AUC-PR metrics for the ISCX dataset using a windows of 2k

Strategy ADWIN DDM STEPD

AUC AUC-PR AUC AUC-PR AUC AUC-PR

Best 0.879 ± 0.008 0.817 ± 0.014 0.855 ± 0.010 0.765 ± 0.016 0.783 ± 0.023 0.694 ± 0.030

Random 0.876 ± 0.006 0.818 ± 0.010 0.853 ± 0.024 0.751 ± 0.039 0.797 ± 0.012 0.730 ± 0.014

Wheel 0.876 ± 0.006 0.821 ± 0.006 0.867 ± 0.009 0.781 ± 0.016 0.808 ± 0.020 0.740 ± 0.024

The best strategy is highlighted in bold, provided that it is significantly better than the others according to Nemenyi post hoc test

example di in the sample, the error rate pi is com-
puted on the basis of this model, and standard deviation
si = √

pi · (1 − pi )/i . Since in a stationary regime the
error rate of C is assumed to decrease when having more
examples, a significant increase in the error rate suggests
a drift in the class distribution. This check is performed

by DDM by comparing pi + si with pmin + 3 · smin ,
where pmin and smin are the minimum values of pi and
si , respectively, in the current sample. This technique is
expected to be good at detecting abrupt changes and (not
too slow) gradual changes.
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– ADWIN (“ADaptativeWINDdowing”) (Bifet andGavalda
2007)maintains a slidingwindowW with themost recent
tuples and compares the class distributions in two sub-
windows ofW . When the difference of the average value
of the two sub-windows is greater than a given thresh-
old, then the older sub-window is dropped and a change
in the distribution of examples is detected. The dimen-
sion of the windows is increased dynamically as long as
no changes are found, or decreased when a change has
been detected. A confidence parameter δ is used to con-
trol the false-positive rate: if the expected value of the
distribution remains constant within W , the probability
that ADWIN shrinks the window at this step is at most δ.

For all of the above drift-detection models, the standard
setting of the parameters have been used in the prototypal
implementation of our framework and in the experimenta-
tion [see (Bifet and Gavalda 2007) for details on the specific
values of the parameters]. In particular, for STEPD we fixed
αd = 0.03 and αw = 0.08, as suggested in Nishida and
Yamauchi (2007), and used windows of 20 instances (as in
Nishida and Yamauchi 2007). The confidence parameter δ of
ADWIN was always set to 0.002.

5.4 Classifier induction

As explained before, this module is responsible for inducing
a collection of base models from given training tuples, and
it is called when building an initial version of the ensem-
ble and whenever a concept drift is detected on a window
Di (to extract a collection of new base models that capture
well the emerging concept). The module is built on the well-
known Massive Online Analysis (MOA) toolbox,4 which
allows for efficiently applying different classifier-induction
methods to streaming data. The current implementation of
the module reuses functionalities for building decision trees,
Bayesian models, logistic regression models, as well as k-
NN classifiers. In particular it includes the implementation
of the following algorithms (which were all used in the
experimentation discussed in Sect. 6): J48 (decision trees),
JRIP (Ripper rule-learning algorithm),NBTree (Naive Bayes
trees), Naive Bayes (Bayesian net, with class-conditionally
independent attributes), 1R classifier, Logistic Model Tree,
Logistic Regression, Decision Stumps and 1BK (k-nearest
neighbor algorithm).

6 Experimental section

This section discusses the results of different suites of exper-
iments that we performed to compare the performance of

4 http://moa.cms.waikato.ac.nz/.

our approach (referred to as E2SC4I D from now on) to
those of several state-of-the-art competitors, and to study the
effect of different window sizes and different strategies for
both detecting the drifts and replacing the base classifiers. An
artificial dataset and a real intrusion detection dataset were
used to this aim, which are described in the next subsection
together with the parameter setting and evaluation metrics
that have been employed in the experimentation.

6.1 Datasets, parameters andmetrics

Datasets The performances of both E2SC4ID and the com-
petitors were evaluated on an artificial dataset and a real
dataset of the cyber-security domain. The Hyperplane gen-
erator available in MOA, very popular as a benchmark for
drift-detection algorithms (Hulten et al. 2001), was used
to generate the artificial dataset. This generator produces
data for a binary classification problem, taking a random
hyperplane in a d-dimensional Euclidean space as decision
boundary. The user can customize the number of attributes
generated and the attributes involved in the drift (respectively
20 and 10 in our experiments), as well as the magnitude of
changes and the percentage of noise to be added to the data. In
our experiments, we fixed the parameter sigmaPercentage
to 10, the percentage of noise to 5% and the total number
of tuples to 100, 000. Let us refer to the resulting artificial
dataset as Hyperplane, from now on.

As most of the popular intrusion datasets used in the past
to test IDS systems (e.g., KDD, DARPA, NSL-KDD) do not
adequately supply a realistic scenario (Tavallaee et al. 2010),
we resorted to a more recent (and more realistic) dataset:
the ISCX IDS dataset from the Information Security Centre
of Excellence of the University of New Brunswick (Shiravi
et al. 2012). Going more into detail, this dataset is the result
of capturing seven days of network traffic in a controlled
testbed made of a subnetwork placed behind a firewall. Nor-
mal trafficwas generatedwith the aid of agents that simulated
normal requests of human users following some probability
distributions extrapolated from real traffic. Attack were gen-
erated with the aid of human operators. More specifically,
the dataset consists of 2,230,620 records, made of standard
pcap (packet capture) files, one for each day and containing
information on the network traffic of that day.As summarized
in Table 1, different days contain different attack scenarios,
including HTTP Denial of Service, DDos, Brute Force SSH
and attempts of infiltrating the subnetwork from the inside.
Therefore, this dataset is particularly apt to our aims, as it rep-
resents the situation in which new types of attacks emerge
over the time.

To turn these traffic data into the tabular form required
by our framework, we aggregated them at the level of traf-
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fic flows, by resorting to the popular flowcalc tool5

used in many previous intrusion detection works (and more
suitable for streaming data settings, than other more recent
pcap-oriented data extraction tools). The resulting tuples rep-
resent different network flows, consisting of both categorical
attributes (e.g., the protocol used) and several aggregated
measures (e.g., the total number of packets and of bytes
exchanged in the flow, aggregate statistics on packets’ sizes
and inter-arrival times, the size of the first packets in the flow,
and possibly statistics on web traffic’s content). The dataset
obtained this way is referred to as ISCX hereinafter.
Parameters’ setting and Test of Significance The WEKA’s6

implementations of the following machine-learning algo-
rithms were used to induce the base classifiers of our
ensembles (i.e., to populate the list learners of algorithms
in Fig. 3): J48, JRIP, NBTree, Naive Bayes, 1R classifier,
logistic model trees, logistic regression, decision stumps and
1BK.

The maximum number maxC of base classifiers was kept
fixed to 20. However, the initial version of the ensemble
model (induced from the first chunk of data) was made to
only consists of 10 base classifiers.

No tuning phase was conducted for the GP tool, which
was used with the same parameters’ setting as in the original
paper (Folino et al. 2003): a crossover probability of 0.7,
a mutation probability of 0.1, a maximum depth of 7, 120
individuals per population, and 500 generations.

All the experiments were performed on a Linux cluster
with 16 Itanium 2 1.4 GHz nodes, each having 2 GBytes
of main memory and connected through a high-performance
Myrinet network. All the results shown in this section were
obtained by averaging those obtained in 30 different trials.

In order to enable for statistically significant compara-
tive analyses, we resorted to a combined application of the
Friedman test and Nemenyi test. Basically, the Friedman test
(Demsar 2006) is a non-parametric statistical test that allows
for assessing whether there are differences in the results of a
collection of methods. The null hypothesis of this test is that
all the populations of results (corresponding each to the appli-
cation of one of themethods analyzed) have the samemedian
value. Once the Friedman test rejects the null hypothesis, a
post hoc test is required in order to make pairwise compar-
isons, and detect the couples of methods that are significantly
different. In our experimental analysis, the Friedman test was
executed for all the measures (columns) of all the tables in
Sects. 6.2 and 6.3 (i.e., Tables 2, 3, 4, 5 and 6), with a crit-
ical value obtained from a Chi-square distribution with two
degrees of freedom and a significance level of 5%. The p
value was corrected for multiple hypotheses by using the
Holm methodology (García and Herrera 2009) and, to verify

5 http://mutrics.iitis.pl/flowcalc.
6 http://www.cs.waikato.ac.nz/ml/weka.

the differences between each couple of methods, as post hoc
test, we adopted the Nemenyi test (Demsar 2006).
Evaluation metrics Two different quality metrics have been
used to evaluate the discovered classificationmodels: (i)AUC
(area under the ROC curve), which quantifies the area under
the curve relating the false-positive rate and the true-positive
rate of the classification model under evaluation; and (ii)
AUC-PR (area under the curve of precision–recall), which
measures the area under the curve relating the precision and
recall scores obtained by a classification model.

Thesemeasureswere computed according to a binary clas-
sification setting, featuring only two classes of instances:
negative instances (representing normal behaviors) and pos-
itive instances (representing anomalous/attack behaviors).

Notably, the latter metrics is often regarded as a more suit-
able metrics for IDS settings featuring imbalanced classes,
owing to the fact that it does not depend on the true-positive
rate—and hence it is less biased in scenarios where the
normal connections are far more than the malicious ones.
However, AUC-PR is more benevolent towards classifica-
tion models that raise many false alarms. In the light of these
considerations, we eventually decided to adopt both metrics
in our empirical analysis.

6.2 Studying the effect of different replacement and
drift-detection strategies

A first suite of experiments were carried out to evaluate
the effectiveness of our approach in a number of different
operating modes, corresponding to different instantiations of
the classifier-replacement strategy and of the drift-detection
model (DM). This allows us to study the impact, on the
quality of the classification model returned, of these two
important (parametric) aspects of the proposed framework.

To this end, we considered 9 different configurations
of algorithm E2SC4I D, resulting from combining each
of the three replacement strategies introduced in Sect. 5.2
(namely, Wheel, Random and Best), with one of the three
drift-detectionmodels (namely, ADWIN,DDMand STEPD)
described in Sect. 5.3. Furthermore, we considered two dif-
ferent values, namely 1k and 2k, for the size of the chunking
window (i.e., the number of instances per data chunk) –these
two values correspond to setting n = 1000 and n = 2000,
respectively, in the algorithm E2SC4I D of Fig. 3. For a
more complete study of the window size’s effect, we refer
the reader to Sect. 6.4.

The AUC and the AUC-PR scores obtained by our
approach on theHyperplane dataset are shown in Table 2 , for
each of the above-mentioned combination of drift-detection
and replacement options.As the performance of our approach
on this dataset did not differ significantly when varying the
size of the windows (i.e., chunks), we prefer to report these
scores only for the case of 1k-sized windows. By contrast,
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Table 5 Comparison with the
competitors on dataset
Hyperplane: AUC and AUC-PR
results obtained when using
each of the drift-detection
strategies (ADWIN, DDM and
STEPD), and a fixed window
size of 1k

Algorithm ADWIN DDM STEPD

AUC AUC-PR AUC AUC-PR AUC AUC-PR

RandHTree 0.570 0.556 0.632 0.610 0.621 0.610

HoeffTree 0.641 0.622 0.641 0.622 0.683 0.663

Meta-TAC 0.640 0.621 0.653 0.631 0.680 0.651

RHTBoost 0.725 0.709 0.856 0.811 0.858 0.849

HTBoost 0.859 0.807 0.875 0.802 0.930 0.917

E2SC4ID 0.939 0.926 0.941 0.928 0.931 0.920

The algorithm(s) performing significantly better than all the other ones (according to Nemenyi post hoc test)
are highlighted in bold

Table 6 Comparison with the
competitors on dataset ISCX:
AUC and AUC-PR results
obtained when using each of the
drift-detection strategies
(ADWIN, DDM and STEPD),
and a fixed window size of 1k

Algorithm ADWIN DDM STEPD

AUC AUC-PR AUC AUC-PR AUC AUC-PR

RandHTree 0.729 0.740 0.822 0.815 0.734 0.727

HoeffTree 0.771 0.781 0.813 0.810 0.822 0.824

Meta-TAC 0.783 0.798 0.819 0.835 0.824 0.826

RHTBoost 0.860 0.825 0.891 0.844 0.928 0.885

HTBoost 0.864 0.798 0.869 0.758 0.890 0.783

E2SC4ID 0.874 0.827 0.892 0.822 0.797 0.746

The algorithm(s) performing significantly better than all the other ones (according to Nemenyi post hoc test)
are highlighted in bold

the AUC and AUC-PR scores obtained on the ISCX dataset
are reported for a window size of 1k and of 2k, in Tables 3
and 4, respectively.

For all the experiments in this subsection, when the Fried-
man test detects differences, we highlight the best strategy
in bold, on the basis of the results of the Nemenyi post hoc
test. Obviously, if the Friedman test fails, no algorithm is
highlighted, as the differences are not significant.
From analyzing the tables, it is evident that the Wheel
replacement strategy, when combined with the ADWIN and
DDM drift detection methods, outperforms significantly (or
in a few cases is not significantly different) the other ones in
terms of bothAUCandAUC-PR, on both the artificial dataset
and the real dataset. When employing STEPD, on the con-
trary, no significant differences can be observed among all
the methods.

The degradation of the performance due to using awindow
of 2k does not appear particularly relevant here. However, we
pinpoint that the effect of increasing the window size will be
analyzed in more detail in Sect. 6.4.

6.3 Comparison with state-of-the-art algorithms

In accordance with the results of the previous subsection, the
Wheel replacement strategy appears to be the best choice.
Thus, let us focus on this particular configuration of our
approach, in our empirical comparison with existing (com-
petitor) approaches to online classification.

To this end, we considered five state-of-art algorithms
(three of them ensemble-based), suitably empowered with
the same drift-detection models as in our framework, for the
sake of fairness:

– HoeffTree: The popular algorithmHoeffding Tree in Hul-
ten et al. (2001), devised to incrementally induce a
decision tree in an efficient (and yet sound) way by only
using aminimal number (chosen according to theHoeffd-
ing bound) of training examples to decide each split (in
the growing phase).

– RandHTree:A randomizedversionof theHoeffdingTree,
defined in Bifet et al. (2012), where only a small subset
of the attributes are considered for splitting the training
data associated with a leaf the decision tree, during the
growing phase. More precisely, from the m original data
attributes, only �√m
 attributes are selected at random,
and used to decide the next attribute to split on.

– HTBoost: The boosting scheme OzaBoost (Oza 2001),
instantiated with an Hoeffding-Tree base learner. Basi-
cally, themeta-learning schemeOzaBoost canbe regarded
as an adaptation of the well-known AdaBoost algo-
rithm (Schapire 1995) to online classification settings
that employs a Poisson distribution to decide whether
an example will be used or not for training the chain of
classifiers.

– RHTBoost: The same boosting scheme OzaBoost (Oza
2001) as in the previous case, using the above-mentioned
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Comparison of the meta-learning-based competitors with E2SC4ID on dataset ISCX for different window sizes (namely, 1k, 2k, 5k, 10k):
AUC (left) and AUC-PR (right) results obtained when using different drift-detection strategies, namely ADWIN (top), DDM (middle), and STEPD
(bottom)

Randomized Hoeffding-Tree algorithm of (Bifet et al.
2012) as base learner.

– Meta-TAC: The meta-learning (more precisely, wrapper)
scheme Temporally Augmented classifier in Žliobaitė
et al. (2015), combined with an Hoeffding-Tree base
learner. Basically, before applying the base learner, every

example tuple di in the input stream is augmented with k
additional attributes, representing the class labels of the
k most recent examples appeared in the stream before
di . The (meta) training instances obtained this way are
then passed to the base learner (which will compute an
Hoeffding-Tree classifier, in our case). This allows for
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capturing dependencies that link the input features to the
past class labels, or the labels at different times to one
another—via a sort of k-order Markov chain. The default
setting k = 1 was used in the tests presented next.

All the experiments described in the following were car-
ried out by only using a window size of 1k, but combining
each algorithm with each of the three drift-detection strate-
gies (i.e., ADWIN, DDM and STEPD) considered. For
testing the competitor algorithms, we leveraged the respec-
tive implementations available in the MOA library.

The results that our algorithm (with the Wheel replace-
ment strategy) and the competitors obtained on the Hyper-
plane and ISCX datasets (when using a window of 1k) are
shown in Tables 5 and 6, respectively. For each algorithm,
three different configurations are reported in this compari-
son, which correspond to the three different drift-detection
strategies considered (i.e., ADWIN, DDM and STEPD).
For each column, i.e., for each combination of qualitymetrics
and drift detection strategy, when the Friedman test detects
differences,we have adopted the following strategy: the algo-
rithms were ranked on the basis of the results of the Nemenyi
post hoc test, and the algorithm (or group of algorithms),
which is significantly better than all the other competitors, is
highlighted in bold. In the remaining cases (with no signif-
icant differences found by the Friedman test), no algorithm
has been highlighted.
As far as concern the artificial dataset Hyperplane, our algo-
rithm is significantly better than all the competitors when
used together with the ADWIN or the DDM drift-detection
strategy, whereas its results are comparable toHTBoostwhen
adopting the STEPD strategy. The tree-based algorithms and
Meta-TAC appear to perform considerably worse than the
other ensemble-based algorithms.

A similar trend emerges from analyzing the results on
the real dataset ISCX, even if the degradation in perfor-
manceof the tree-based algorithms is less evident.Whenused
togetherwith theADWIN strategy, E2SC4IDobtains the best
results in terms of both AUC and AUC-PR (even if for the
latter metrics, it is comparable to RHTBoost). When detect-
ing the drifts with DDM, the best AUC is obtained by our
approach (together with RHTBoost), while RHTBoost and
Meta-TAC outperform all the others in terms of AUC-PR, but
our approach is only slightly worse. Finally, the RHTBoost
algorithm performs significantly better than all the other ones
when used together with the STEPD strategy.

6.4 The effect of different sizes of the window

This subsection aims to analyze the behavior of the ensemble/
meta-learning-based algorithms (E2SC4ID and the competi-
torsMeta-TAC,HTBoost,RHTBoost) when varying the size
of the windows/chunks (1k, 2k, 5k and 10k).

Figure 6 reports the results obtained on the ISCX dataset,
for the different window sizes, when combining each of the
compared algorithms with the ADWIN (subfigures a and b),
DDM (subfigures c and d) and STEPD (subfigures e and f)
drift-detection strategies.

By looking at this figure, a common trend can be observed
for all the analyzed algorithms: when the size of the window
is increased, both the AUC and AUC-PR score degrade, as
it was expected—indeed, when using a larger window, less
driftswill be detectedor, in any case, the classificationmodels
are adapted to the drift in a more delayed way. However, the
RandHTree algorithm appears less affected by this degrada-
tion, especially in terms of AUC, probably because it works
with the most recent examples in the input stream and, there-
fore, it is less prone to the problem of not detecting the drift
in a timely manner.

Interestingly, E2SC4ID, for all the drift-detection tech-
niques, does not degrade too much also when the size of
the windows arrives to 10k. However, while when using the
AWIN and DDM strategies E2SC4ID outperforms the other
competitors, when it is combined with the STEPD strategy
it is surpassed by both RHTBoost and HTBoost, even if the
differences are less relevant in terms of the AUC-PR metric.

7 Conclusion and future work

An ensemble-based framework for the online classification
of intrusion detection data has been proposed here, which
relies on using an ensemble classification model where the
combiner function is defined in terms of non-trainable aggre-
gation functions, and discovered in a data-drivenway through
a Genetic Programming (GP) method. This approach is sup-
ported by a system architecture, which integrating different
kinds of functionalities, ranging from drift-detection mech-
anisms, to the induction/replacement of base models, to the
efficient GP-based computation of the combiner function.

A suite of experiments, conducted on artificial and real
datasets, permitted us to compare our approach with sev-
eral competitors, and to study the effect of different window
sizes and different strategies for both detecting the drifts and
replacing the base classifiers. The result of these experiments
confirmed that the proposed framework is capable of dealing
with non-stationary data streams in an effective manner, and
hence constitutes a valuable solution for real-life intrusion
detection scenarios.

Future work In order to empower the framework with the
ability to equip the ensemble models with more expressive
(and hopefully more effective) combiners, we plan to inves-
tigate on complementing the simple range of non-trainable
aggregation functions currently used in it with classic fuzzy-
logics functions (such as t-norms) and/or generalizedmixture
functions (Costa et al. 2018). Moreover, we will try to extend
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the framework in a way that “context-aware” combination
schemes can be derived,which can adapt to the features of the
tuple that is being classified, in the spirit of Dynamic Ensem-
ble Selection/Weighting (Cruz et al. 2018) approaches. These
two lines of extension clearly entail a careful study and
design, seeing as they might strongly impact on computa-
tional aspects.

A further direction of future work concerns adapting the
pre-filtering of the base models (preliminary to the discov-
ery of a new combiner) in a way that the degree of diversity
among the base models is taken into account. Indeed, if hav-
ing a high level of diversity is a desideratum for an ensemble
classifier in general, it may become a key feature for making
it robust enough towards the dynamically changing nature of
intrusion detection scenarios.
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