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Abstract. This paper presents a parallel spatial clustering algorithm based on 
the use of new Swarm Intelligence (SI) techniques. SI is an emerging new area 
of research into Artificial Life, where a problem can be solved using a set of 
biologically inspired (unintelligent) agents exhibiting a collective intelligent 
behaviour. The algorithm, called SPARROW, combines a smart exploratory 
strategy based on a flock of birds with a density-based cluster algorithm to 
discover clusters of arbitrary shape and size in spatial data. Agents use modified 
rules of the standard flock algorithm to transform an agent (boid) into a hunter 
foraging for clusters in spatial data. We have applied this algorithm to two 
synthetic data sets and we have measured, through computer simulation, the 
impact of the flocking search strategy on performance. Moreover, we have 
evaluated the accuracy of SPARROW compared to the DBSCAN algorithm. 

1    Introduction 

Clustering spatial data is the process of grouping similar objects according to their 
distance, connectivity, or their relative density in space [1]. Spatial clustering has 
been an active area of research into data mining, with many effective and scalable 
clustering methods developed. These methods can be classified into partitioning 
methods [2], hierarchical methods [3], density-based methods [4], and grid-based 
methods [5]. Han, Kamber, and Tung’s paper [6] is a good introduction to this 
subject. 

Recently, other algorithms based on biological models have been proposed to 
solve the clustering problem. These algorithms are characterized by the interaction of 
a large number of simple agents sensing and changing their environment locally. They 
exhibit complex, emergent behaviour that is robust compared to the failure of 
individual agents. Ants colonies, flocks of  birds, termites, swarms of bees etc. are 
agent-based insect models that exhibit a collective intelligent behaviour (swarm 
intelligence) [7] and may be used to define new algorithms of clustering. 

In one of the first studies related to this domain, due to Deneubourg et al. [8], a 
population of ant-like agents randomly moving onto a 2D grid are allowed to move 
basic objects so as to classify them. This method was further developed by Lumer and 
Faietta [9] with simple objects that represent records in a numerical data set, and by  



Kuntz and Snyers [10] who analyzed a real clustering problem in order to efficiently 
resolve an optimization problem. Monmarchè et al. [11] exploit this existing work 
from the knowledge discovery point of view with the aim of solving real world 
problems.  They introduce a more robust heuristics based on stochastic principles of 
an ant colony in conjunction with the deterministic principles of the Kmeans 
algorithm. A flocking algorithm has been proposed by Macgill and S. Openshaw 
[12,13] as a form of effective search  strategy to perform an exploratory geographical 
analysis. The method takes advantage of the parallel search mechanism a flock 
implies, by which if a member of a flock finds an area of interest the mechanics of the 
flock will drive other members to scan that area in more detail.  

In this paper, we present a parallel spatial clustering algorithm SPARROW 
(SPAtial ClusteRing AlgoRithm thrOugh SWarm Intelligence), which is based on an 
adaptive flocking algorithm combined with a density-based cluster algorithm, to 
discover clusters of arbitrary shape and size in spatial data. SPARROW uses the 
stochastic and exploratory principles of a flock of birds for detecting clusters in 
parallel according to the density-based principles of the DBSCAN algorithm, and a 
parallel iterative procedure to merge the clusters discovered.  

SPARROW is a multi-agent algorithm where agents use modified rules of 
Reynolds’ standard flock algorithm [14] to transform a boid into a hunter foraging for 
clusters in spatial data. Each agent searches the clusters in parallel and, by changing 
colour, signals the presence or the lack of significant patterns in the data to other flock 
members. The entire flock then moves towards the agents (attractors) that have 
discovered interesting regions, in order to help them, avoiding the uninteresting areas 
that are instead marked as obstacles. Moreover, each agent has a variable speed, 
though sharing a common minimum and maximum with the others. An agent will 
speed up in order to leave an empty or uninteresting region, whereas it will slow 
down in order to investigate an interesting region more carefully. The variable speed 
introduces an adaptive behaviour in the algorithm. In fact, the agents adapt their 
movement by changing their behaviour (speed) according to their previous experience 
represented by the agents which have stopped to signal an interesting region or an 
empty one. 

We have built a Starlogo [15] simulation of SPARROW to investigate the 
interaction of the parameters that characterize the algorithm. The first experiments 
showed encouraging results and a better performance of SPARROW in comparison 
with the standard flock search and the linear randomised search. 

The remainder of this paper is organized as follows: section 2 briefly presents the 
heuristics of the DBSCAN algorithm used for discovering clusters in spatial data, 
section 3 introduces the classical flocking algorithm and presents the SPARROW 
algorithm; section 4 discusses the obtained results while section 5 draws some 
conclusions and refers to future work. 

2 The DBSCAN algorithm 

One of the most popular spatial clustering algorithms is DBSCAN, which is a  
density-based spatial clustering algorithm. A complete description of the algorithm 



and its theoretical basis is presented in the paper by Ester et al. [16]. In the following 
we briefly present the main principles of DBSCAN. The algorithm is based on the 
idea that all points of a data set can be regrouped into two classes: clusters and noise. 
Clusters are defined as a set of dense connected regions with a given radius (Eps) and 
containing at least a minimum number (MinPts) of points. Data are regarded as noise 
if  the number of points contained in a region falls below a specified threshold. The 
two parameters, Eps and MinPts, must be specified by the user and allow to control 
the density of the cluster  that must be retrieved. The algorithm defines two different 
kinds of points in a clustering: core points and non-core points. A core point is a point 
with at least MinPts number of points in an Eps-neighborhood of the point. The non-
core points in turn are either border points if are not core points but are density-
reachable from another core point or noise points if they are not core points and are 
not density-reachable from other points. To find the clusters in a data set, DBSCAN 
starts from an arbitrary point and retrieves all points with the same density reachable 
from that point using Eps and MinPts as controlling parameters. A point p is density 
reachable from a point q if the two points are connected by a chain of points such that 
each point has a minimal number of data points, including the next point in the chain, 
within a fixed radius. If the point is a core point, then the procedure yields a cluster. If 
the point is on the border, then DBSCAN goes on to the next point in the database and 
the point is assigned to the noise. DBSCAN builds clusters in sequence (that is, one at 
a time), in the order in which they are encountered during space traversal. The 
retrieval of the density of a cluster is performed by successive spatial queries. Such 
queries are supported efficiently by spatial access methods such as R*-trees. 

 

3    A multi-agent spatial clustering algorithm 

In this section, we will present the SPARROW algorithm which combines the 
stochastic search of an adaptive flocking with the DBSCAN heuristics for discovering 
clusters in parallel. SPARROW replaces the DBSCAN serial procedure for clusters 
identification with a multi-agent stochastic search that has the advantage of being 
easily  implementable on parallel computers and is robust compared to the failure of 
individual agents. 

We will first introduce Reynolds’ flock of birds model to describe the movement 
rules of the agents from which SPARROW takes inspiration. Then we will illustrate 
the details of the behavioral rules of the agents that move through the spatial data 
looking for clusters and communicating their findings to each other.  

3.1  The flock algorithm 

The flock algorithm was originally devised as a method for mimicking the flocking 
behavior of birds on a computer both for animation and as a way to study emergent 
behavior. Flocking is an example of emergent collective behavior: there is no leader, 
i.e., no global control. Flocking behavior emerges from the local interactions. In the 
flock algorithm each agent has direct access to the geometric description of the whole 



scene, but reacts only to flock mates within a certain small radius. The basic flocking 
model consists of three simple steering behaviours: 

Separation gives an agent the ability to maintain a certain distance from others 
nearby. This prevents agents from crowding too closely together, allowing them to 
scan a wider area.  

 
Cohesion gives an agent the ability to cohere (approach and form a group) with 

other nearby agents. Steering for cohesion can be computed by finding all agents in 
the local neighbourhood and computing the average position of the nearby agents. 
The steering force is then applied in the direction of that average position. 

 
Alignment gives an agent the ability to align with other nearby characters. 

Steering for alignment can be computed by finding all agents in the local 
neighbourhood and averaging together the ‘heading’ vectors of the nearby agents.  

3.2  SPARROW: a flocking algorithm for spatial clustering 

SPARROW is a multi-agent adaptive algorithm able to discover clusters in 
parallel. It uses a modified version of standard flocking algorithm that incorporates 
the capacity for learning that can find in many social insects. In our algorithm, the 
agents are transformed into hunters with a foraging behavior that allow them to 
explore the spatial data while searching for clusters.  

SPARROW starts with a fixed number of agents that occupy a randomly generated 
position. Each agent moves around the spatial data testing the neighborhood of each 
location in order to verify if the point can be  identified as a core point. In case it can, 
all points of the neighborhood of a core point are given a temporary label. These 
labels are updated as multiple clusters take shape concurrently. Contiguous points 
belonging  to the same cluster take the label corresponding to the smallest label in the 
group of contiguous points.  

Each agent follows the rules of movement described in Reynolds’ model. In 
addition, our model considers four different kinds of agents, classified on the basis of 
the density of data in their neighborhood. These different kinds are characterized by a 
different color: red, revealing a high density of interesting patterns in the data, green, 
a medium one, yellow, a low one, and white, indicating a total absence of patterns. 
The main idea behind our approach is to take advantage of the colored agent in order 
to explore more accurately the most interesting regions (signaled by the red agents) 
and avoid the ones without clusters (signaled by the white agents).  Red and white 
agents stop moving in order to signal this type of regions to the others, while green 
and yellow ones fly to find more dense clusters. Indeed, each flying agent computes 
its heading by taking the weighted average of alignment, separation and cohesion.  

The following are the main features which make our model different from Reynolds’: 

 Alignment and cohesion do not consider yellow boids, since they move in a 
not very attractive zone.  



 Cohesion is the resultant of the heading towards the average position of the 
green flockmates (centroid), of the attraction towards reds, and of the 
repulsion from whites, as illustrated in figure 1. 

 A separation distance is maintained from all the boids, apart from their 
color.  

White 

Yellow 

Green 

Red 

ignore it 

resultant 

centroid 

Fig. 1. Cohesion. 

In the following we use the Starlogo language to describe our algorithm and to 
perform the simulations. SPARROW consists of a setup phase and a running phase 
shown in Figure 2. During the setup phase agents are created, data are loaded, some 
general settings are made and the turtles choose their color. In the running phase four 
distinct procedures are repeated by each turtle for a fixed number of times 
(MaxNumberOfGenerations). In fact, ask-turtles is a StarLogo instruction that makes 
all the turtles execute a procedure in parallel and waits for the completion of the 
operation before continuing.  

The choiceColor procedure chooses the color and the speed of the boid with regard 
to the local density of the clusters in the data. It is based on the same parameters used 
in the DBSCAN algorithm: MinPts, the minimum number of points to form a cluster 
and Eps, the maximum distance that the boids can look at. In practice, the boid 
computes the density (localdensity) in a circular neighborhood (with a radius 
determined by its limited sight) and then executes the following instructions: 

 
if  localdensity > MinPts [set color red set speed 0] 
if  MinPts/4 < localdensity < MinPts [set color green set speed 1] 
if  0 < localdensity < MinPts/4 [set color yellow set speed 2] 
if  localdensity = 0 [set color white set speed 0] 

Thus, red and white boids will stop indicating interesting and desert regions to the 
others, while greens will move more slowly than yellows since they will explore 
denser zones of clusters.  In the running phase, the yellow and green agents will 
compute their heading, according to the rules previously described, and will move 
following this direction and with the speed corresponding to their color. Afterwards, 
they will compute their new color, deriving from the movement. According to 
whether they have become red or white, a new boid will be generated in order to 



maintain a constant number of turtles exploring the data. In case the turtle falls in the 
same position of an older it will die.  

  
    To setup 
   import-data;  
 load  the data and the clusters; 
      create-turtles number ; 
     create turtles in random positions 
      . . . . . . 
      ask-turtles [choiceColor]  
      . . . . . . . 
  end 
 
  To run 
   repeat MaxNumberofGenerations [ 
    
    ask-turtles[if color = green or color = yellow [computeDir] 
 
    ask-turtles[if color = green or color = yellow  

 [move choiceColor 
  if color = red or color = white 
   [generateNewBoid  
 if count-turtles-here > 1 [die]]] 

ask-turtles [if color = red [mergeCluster]] 
     
    ask-turtles[if color = green or color = yellow  
         [set age age + 1 
       if age > maxLife [ generateNewBoid die ]]] 
          
      ] ;end repeat 
 
  end ; run procedure 

Fig. 2. Starlogo code of the setup and run procedure of Sparrow. 

At this point red boids will run the mergeColor procedure, which will merge the 
neighboring clusters. The merging phase considers two different cases: when we have 
never visited points in the circular neighborhood and when we have points belonging 
to different clusters. In the first case, the points will be labeled and will constitute a 
new cluster; in the second case, all the points will be merged into the same cluster, i.e. 
they will get the label of the cluster discovered first.  
 
 
 
 
 
 
 

Fig. 3. The cage effect. 

The last part of code invoked by ask-turtles was added to the original algorithm to 
avoid a ‘cage effect’ (see figure 3), which occurred during the first simulations; in 



fact, some boids could remain trapped inside regions surrounded by red or white 
boids and would have no way to go out, wasting useful resources for the exploration. 
So, a limit was imposed on their life; hence, when their age exceeded a determined 
value (maxLife) they were made to die and were regenerated in a new randomly 
chosen position of the space. 

4 Experimental results  

We evaluated the accuracy of the solution supplied by SPARROW in comparison 
with the one of DBSCAN and the performance of the search strategy of SPARROW 
in comparison with the standard flocking search strategy and with the linear 
randomized search. Furthermore, we evaluated the impact of the number of agents on 
foraging for clusters performance.  

To this purpose, we implemented the three different search strategies in Starlogo 
and compared their performance with a publicly available version of DBSCAN.  

     
(b) DS4: 8000 points (a) GEORGE: 5463 points  

 
Fig. 4. The two data sets used in our experiments. 

For the experiments we used two synthetic data sets. The structure of these data 
sets is shown in figure 4(a) and 4(b). The first data set, called GEORGE, consists of  
5463 points. The second data set, called DS4, contains 8843 points. Each point of the 
two data sets has two attributes that define the x and y coordinates. Furthermore, both 
data sets have a considerable quantity of noise. Table 1 and table 2 show, for the two 
data sets, the number of clusters and the number of points for each cluster found by 
DBSCAN and SPARROW and the relative error associated with each cluster. 

Although DBSCAN and SPARROW produce the same results our experiments 
show that SPARROW can obtain the same number of clusters with a slightly smaller 
number of points for each cluster using a smaller number of spatial queries. The same 
results cannot be obtained by DBSCAN because of the different strategy of attribution 
of the points to the clusters. In particular, for the GEORGE data set each cluster found 
in SPARROW has a number of points that is about 2 percent lower than that 
discovered by DBSCAN and for the DS4 data set about the 3 percent. The spatial 
queries performed by SPARROW are for the GEORGE data set  about the 27 percent 
of those performed by DBSCAN and for the DS4 dataset about the 45 percent.  



Table 1. Number of clusters and number of points for clusters for GEORGE data set. 

 
 

Number of 
clusters 

 
Number of points 

for cluster 
(SPARROW) 

 
Number of 
points for 

cluster 
(DBSCAN) 

 
Relative 

error 
(percent) 

 
1 832 848 -1.89% 
2 690 706 -2.27% 
3 778 800 -2.75% 
4 782 815 -4.05% 
5 814 818 -049% 
6 712 718 -0.84% 

 
 
 
 
 
 
 
 
 
 

Table 2. Number of clusters and number of points for clusters for DS4 data set. 

 
 

Number of 
clusters 

 
Number of points 

for cluster 
(SPARROW) 

Number of 
points for 

cluster 
(DBSCAN) 

Relative 
error 

(percent) 

1 844 876 -3.65% 
2 920 928 -0.86% 
3 216 220 -1.82% 
4 1866 1924 -3.01% 
5 522 534 -2.25% 
6 491 502 -2.19% 
7 278 291 -4.47% 
8 2308 2406 -4.07% 
9 272 280 -2.86% 

 
To verify the effectiveness of the search strategy we have compared SPARROW 

with the random-walk search (RWS) strategy of the standard flock algorithm and with 
the linear randomized search (LRS) strategy.  

Figure 5 gives the number of clusters found through the three different strategies 
in 250 time steps for the DS4 data set. Figure 5 reveals that the number of clusters 
discovered at time step 65 from RWS and LRS strategy is slightly higher than that of 
SPARROW. From time step 66 to 110 the behavior of  SPARROW is better than that 
of RWS but worse than LRS. SPARROW presents a superior behavior on both the 
search strategies after the 110 time step because of the adaptive behavior of the 
algorithm that allows agents to learn on their previous experience. A similar 
behaviour is also present in the GEORGE data set. 

Finally, we present the impact of the number of agents on the foraging for clusters 
performance. Figure 6 gives, for the DS4 data set, the number of clusters found in 250 
time steps for 25, 50 and 100 agents.  

A comparative analysis reveals that a 100-agents population discovers a larger 
number of clusters than the other two populations with a smaller number of agents.   
 



 
 

 Fig. 5. Number of clusters found for  the DS4 dataset. 

This scalable behaviour of the algorithm determines a faster completion  time 
because a smaller number of iterations  are necessary to produce the solution. 

  
Fig. 6.  The impact of the number of agents on foraging for clusters strategy. 

5 Conclusions 

In this paper, we have described the parallel clustering algorithm SPARROW, which 
is based on the use of swarm intelligence techniques. The algorithm combines a smart 
exploratory strategy based on a flock of birds with a density-based cluster algorithm 
to discover clusters of arbitrary shape and size in spatial data. The algorithm has been 
implemented in STARLOGO and compared with DBSCAN using two synthetic data 
sets. Measures of accuracy of the results show that SPARROW exhibits the same 
behaviour of DBSCAN although it needs a smaller number of spatial queries. 
Moreover, the adaptive search strategy of SPARROW is more efficient than those of  
the random-walk search (RWS) strategy of the standard flock algorithm and of the 
linear randomized search (LRS). Among the possible perspectives, we are currently 
testing SPARROW using real data sets such as the raster data of the AMBIENTE GIS 
concerning the landslides events that have occurred in the Campania Region in May 
1998. In addition, we are studying how to parallelize SPARROW on a Linux cluster 
in order to tackle large size problems. 
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