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Abstract

Cellular automata (CA) are discrete dynamic systems that have been used for
modeling many physical systems. CA are often used as an alternative to model
and solve large-scale systems where the use of partial differential equations involve
complex and computationally expensive simulations. The purpose of this work is to
investigate the use of CA based techniques for modeling and parallel simulation of
water flux in unsaturated soils. Unsaturated flow processes are an important topic in
several branches of hydrology, soil science and agricultural engineering dealing with
soil-atmosphere interaction, subsurface flow and transport processes. In this paper a
CA model for 3D unsaturated flow simulation is proposed using an extension of the
original computational paradigm of cellular automata. This model, aimed at simu-
lating large-scale systems, uses a macroscopic CA approach where local laws with
a clear physical meaning govern interactions among automata and its correctness
is proved by CAMELot system, which allows the specification, parallel simulation,
visualization, steering and analysis of CA models in the same environment, using a
friendly interface providing at the same time considerable flexibility. The model has
been validated with reference multidimensional solutions taken from benchmarks
in literature, showing a good agreement even in the cases where non-linearity is
very marked. Furthermore, using some of these benchmarks we present a scalability
analysis of the model and different quantization techniques aimed at reducing the
number of messages exchanged, and then the execution time, when simulations are
characterized by scarce mass interactions.
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1 Introduction

Computer models are widely used in many disciplines, ranging from physics,
chemistry, biology, economics, to hydrology. A computer model is a computer
program which attempts to simulate an abstract model of a particular system.
Many researchers use computer modelling as the principal tool for qualitative
and quantitative insight into complex systems and as a virtual laboratory to
explore theory by simulation. Today, we can build simulation models which
allow to predict the behavior of physical systems in actual or hypothetical
circumstances. Moreover, the advent of parallel computing is making complex
simulations in many disciplines tractable, increasing the interest in different
application fields.

An area of remarkable interest where the importance of simulation is increas-
ing is the one concerning fluid flow in unsaturated zones. Unsaturated flow
processes are an important topic in several branches of hydrology, soil science
and agricultural engineering dealing with subsurface flow and transport pro-
cesses. These phenomena are in general complicated and difficult to describe
quantitatively, since they often entail changes in the state and content of soil
water during flow.

Soil water dynamics can be expressed in the form of mathematical expressions
aimed at describing the hydrological relationships within the system. The gov-
erning equations define a mathematical model. The entire model has usually
the form of a set of partial differential equations, together with auxiliary con-
ditions. The auxiliary conditions have to describe the system geometry, the
system parameters, the boundary conditions and, in case of transient flow,
also the initial conditions. If the governing equations and auxiliary conditions
are simple, an exact analytical solution may be found. Otherwise, a numerical
approximation is applicable. The numerical simulation models are by far the
most applied ones.

Numerical simulations require the discretization of the model into a grid. This
approach is very sensitive to temporal and spatial resolution and has serious
drawbacks. For example, using explicit finite difference methods in order to
obtain reasonable accuracy, the length of the interval in space must be kept
small. Furthermore, to get a stable solution, the time step has to be small
compared with the space interval. Thus, it is necessary to have a large number
of time steps when the simple explicit method is used.

An alternative approach is to consider a discrete cell system characterized
by smaller sizes of cells where the uniformity hypothesis is less respected,
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then we can use the same constitutive equations adopted in the differential
context as an approximation, without the need of going down to the differential
form and then going up again to the discrete form [18]. Such an approach is
particularly suitable to the use of cellular automata (CA) paradigm [21] and
to be developed in parallel computing environments.

CA are discrete dynamic systems composed of a set of cells in a regular spatial
lattice, either one-dimensional or multidimensional. They are characterized
by the following properties: each cell can have any one of a finite number of
states; the states of all cells are updated synchronously according to a local
rule, called transition function; the evolution takes place in discrete time steps.
The collection of states of all the cells of the lattice forms the configuration of
the automaton.

CA model a problem in a naturally parallel way as a collection of identical
transition functions (set of rules) simultaneously applied to all the cells of
the automata. This bottom-up approach differs from standard one to parallel
computation, where a problem is split into independent subproblems, each
solved by a different processor, and then combined in order to yield the final
solution.

Many CA applications in fluid-dynamics exist, most of these based on micro-
scopic approaches: lattice gas automata models were introduced to describe
the motion and collision of particles interacting according to appropriate laws
on a lattice space [5]. Lattice gas models, due to the simplicity of both fluid
particles and their interactions, allow simulations of a large number of par-
ticles, which are only capable of reproducing the birth of macroscopic flow
patterns. The discrete nature of lattice gas models has shown some weak-
nesses which can be partially solved by the Lattice Boltzmann models, where
the state variables can take continuous values (instead of integer variables), as
they are supposed to represent the density of fluid particles endowed with cer-
tain properties located in each cell [17]. Lattice Boltzmann models have been
used to model flow in porous media, but the applications so far developed
take a more microscopic approach and aim at describing phenomena which
take place at the pore level [1].

Unsaturated flow modelling represent complex macroscopic fluid dynamic phe-
nomena, which seem difficult to model in these CA frames, because they occur
on a large space scale and need, practically, a macroscopic level of description
that involves the management of a large amount of data. Empirical CA meth-
ods were developed on the macroscopic scale in order to overcome these limits
[7], using local laws where automata interactions were based on parameters
whose physical meaning was not clear and, as a consequence, heavy calibration
phases were necessary to estimate suitable values of the same parameters.
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In this paper by means of the same extended notion for macroscopic cellular
automata, we describe a three-dimensional model which simulates water flux
in unsaturated not deformable soils, but the local laws governing the automata
interactions are based on physically-based rules.

Although CA provide an intrinsically parallel model, to use this model ef-
fectively on a parallel machine a programming environment for macroscopic
approaches has to be considered. To this purpose, a problem solving envi-
ronment called CAMELot that allows interactive simulation and steering of
parallel cellular computations has been utilized [3]. CAMELot is a system that
uses macroscopic CA model both as a tool to model and simulate dynamic
complex phenomena and as a computational model for parallel processing. It
combines simulation, visualization, control and parallel processing into a tool
that allows to interactively explore a simulation, visualize the state of the com-
putation as it progresses and change parameters, resolution or representation
on the fly.

The 3D unsaturated flow model built in CAMELot is based on the application
in each cell, which represents a portion of the soil, of a partially discrete form
of the physical laws obtained by combining a mass-balance equation and a
constitutive equation (Darcy’s law). This approach allows both to provide a
physically-based method for modeling the phenomenon and to maintain the
transition function rules simple. The accuracy of the model has been evaluated
for different multidimensional schemes providing results similar to those of
other approaches described in Paniconi et al. [14] and Smith et al. [15].

Furthermore, for the same model an analysis of the performance was carried
out on a 3D scheme characterized by different sizes. Numerical tests have
shown that when the CA unsaturated flow model is used to simulate larger
domains, or by analyzing greater spatial resolution, then the execution perfor-
mance has a good scalable behavior. All the same, the execution times of the
model have been reduced using different quantization techniques [22] aimed
at limiting the number of messages exchanged, especially when scarce mass
interactions occur. A quantized system is a system with input and output
quantizers, which generates state updates only at quantum level crossings.
Unfortunately, the quantization techniques introduce errors because of the
approximations adopted. Combining different methods, with regard to time
and space, we have obtained important reductions in the error involved, while
maintaining the high performance of quantized models.

Section 2 presents a discrete approach describing fluid flow in unsaturated
soils, obtained combining a mass-balance equation with a constitutive equa-
tion. Section 3 describes the mapping of the discretization in a macroscopic
cellular automata scheme. Section 4 presents the CAMELot environment and
an analytical performance model. Section 5 shows the simulations carried out
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within CAMELot, the model accuracy and the validation of the performance.
Finally, simulations of the quantized versions of the model are shown in Sec-
tion 6.

2 A discrete formulation for flow modelling in unsaturated soils

If a discrete cell system is considered, we may hypothesize the form of the
governing equation of the unsaturated flow through the same constitutive law
used in the differential context, as an approximation. This equation, whose
solution provides the variables configuring the infiltration phenomenon, is
based on the interpretation of the mass-balance equation and the constitu-
tive equation (Darcy’s law), and it can be written in the following complete
form according to Mendicino et al. [12]:

∑

α

−Kαc(ψc)

(

hα − hc

lα

)

Aα + VcCc
∆hc
∆t

= qc (1)

where pedices c indicates that the variable is referred to the cell c where the
water mass balance is performed, while pedices α indicates that the variable
is referred to the adjacent cell along the generic direction α obtained linking
the centers of the masses of the two cells, Kαc(ψc) [LT−1] is the hydraulic
conductivity averaged between cell c and the adjacent cell along the direction
α (it is constant in a saturated soil while in an unsaturated soil it depends on
capillary pressure ψc [L]), hc and hα [L] are the total heads of the cell c and of
that adjacent, lα [L] is the cell dimension, Aα [L2] is the surface area where the
flux passes through, Vc [L3] is the cell volume, Cc [L−1] is the specific retention
capacity depending on ψc [2], ∆hc

∆t
is the total head gradient in the time step

∆t, and qc is the volumetric mass source term [L3T−1].

Equation 1 can be applied to each cell of the domain in the same way as
explicit-type approaches, where ∆hc is the only unknown term to be estimated
in the next time step. Such an approach proves to be particularly suitable
to the use of a macroscopic cellular automata environment (such as will be
described in the next section) and to be developed in a parallel computing
system.

The Delaunay tessellation used in our case involves a discrete governing equa-
tion similar to the one achieved using Finite Difference or Finite Volume
Method schemes [11] [10]. If we don’t use a Delaunay tessellation and an irreg-
ular mesh is considered, then the discrete governing equation is achieved by
means of an interpolation of the hydraulic head on the cells of the automata.
In this case Tonti [18] has shown that for linear interpolation the discrete gov-
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erning equation system coincides with the one of the Finite Element Method,
but for quadratic interpolation it differs from the FEM scheme, also achieving
a greater convergence order.

Furthermore, when a method with a differential or integral formulation is used,
the choice of the cell or the tessellation type depends on the method selected.
Differently, in the case of direct discrete formulation cell, tessellation and time
interval can be chosen considering the physical laws governing the problem,
the spatial and temporal scale of the phenomenon and, finally, the macroscopic
CA environment (for example, by using different shapes - triangles, squares
and hexagons - for the single elements in the same domain).

The discrete formulation that we present can be applied to heterogeneous
and anisotropic porous media while avoiding jump conditions. The hydraulic
head is assumed to be continuous and need not be differentiable. Each cell
may have different constitutive properties: this allows composite porous or
fractured media to be dealt with. The sources can be discontinuous (drainage
trench or superficial recharge) and also may be concentrated (wells or sinks).
Equation 1 is valid for interior or boundary cells: in this way, we can avoid the
unnatural separation of the differential equations and the boundary conditions,
which is typical of a differential formulation.

3 The cellular automata model for 3D unsaturated flow

Cellular automata (CA) are a dynamic system where space, time and states are
hypothesized as being discrete. They are based on a division of space in regular
cells, each one having an identical computational device embedded: the finite
automaton (fa). The fa input is given by the states of the neighboring cells,
including the cell embedding the fa. Specifically, the fa states vary according
to a local rule (transition function); i.e. in a given time step a fa state depends
on its state and on those of neighboring cells at the previous time step. Finite
automata have identical transition functions, which are simultaneously applied
to each cell (synchronous CA). At the beginning all the fa are in arbitrary
states representing the initial conditions of the system, then the CA evolves
by changing the state of all fa simultaneously at discrete time steps according
to the fa transition function. Finally, the global evolution of the CA system
is derived from the evolution of all the cells.

There are several modifications and extensions of the standard CA which have
been considered in literature ??. Generalized CA models include some of the
following features:

• temporal and spatial heterogeneity both in the transition function and in the

6



neighborhood. Temporal heterogeneity is used when the transition function
or the neighborhood of a cell changes during time. An example for temporal
heterogeneity occurs in picture processing by CA where the pixels of a
digitized image are stored in the cells of a CA, and the processing consists
in the application of several filters or other operators to an image, where
each of the operators is implemented as the local transition rule of a CA.
In this case it helpful to use a generalized CA where first for some number
of steps the local rule implementing the first operator is applied, afterwards
to the result of this, i.e., the contents of the cells of the CA, for some more
steps the local rule implementing the second operator, and so on. Spatial
heterogeneity occurs when one can allow that the size and the shape of the
neighborhood of a cell may vary throughout the lattice, and similarly the
local transition rule used by the cells.

• continuity of the state. Continuous CA are an extension of CA in which the
discrete state values of CA cells are replaced with continuous real values.
Like basic CA, continuous CA are discrete in space and time and are a ver-
satile technique for modeling a wide variety of phenomena. The continuity
of the state is not a problem; in practical case the utilized variables have
a finite number of significant digits and a finite range of permitted values,
then the set of utilized values could be extremely large, but always finite.

• asynchrony in the transition function so that every cell can, at each step,
nondeterministically choose between changing its state according to σ or
keeping it;

• complex time-dependent neighborhoods (i.e. block rules), and
• probabilistic and hierarchical transition functions.

The proposed model consists of a continuous CA characterized by a three-
dimensional domain, regularly subdivided in cubic cells described by the fol-
lowing functional structure:

A = (Ed, X,Q, P, σ) (2)

where Ed = {(x, y, z)|x, y, z ∈ N, 0 ≤ x ≤ lx, 0 ≤ y ≤ ly, 0 ≤ z ≤ lz} is the
set of cells identified by points with integer co-ordinates in the finite region,
where the phenomenon evolves; N is the set of natural numbers; lx, ly and lz
represent the limits of the region;

X = {(0, 0, 0), (−1, 0, 0), (0, 1, 0), (0, 0,−1), (0, 0, 1), (0,−1, 0), (1, 0, 0)} identi-
fies the 3D von Neumann neighborhood, which influences the change in state
of the central cell (Fig. 1);

Q is the finite set of the fa states, given by the Cartesian product of the
following sub-states:
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(1,0,0)(-1,0,0)

(0,1,0)

(0,-1,0)

(0,0,1)

(0,0,-1)

Fig. 1. Three-dimensional von Neumann neighborhood.

Q = Qh ×Qψ ×Qθ ×QK ×Q∂ (3)

where Qh is the sub-state describing the total head of the cell, Qψ is the
sub-state describing the pressure head (ψ = h − z), Qθ is the sub-state de-
scribing the water content through the value of moisture content in volume
θ, QK describes the hydraulic conductivity sub-state and, for transient condi-
tion analyses Q∂ indicates the sub-state corresponding to a parameter value
necessary to guarantee the convergence of the system;

P is the finite set of CA global parameters which affects the transition function
and is made up of some parameters associated to the characteristic equations,
the saturation permeability, the automaton dimension and the time step. In
particular, we have the residual water content θr, the saturation water content
θs, the capillary air entry pressure ψs, the pore-dimension distribution index
n, a continuity parameter for pressure head ψ0, the specific storage Ss, the
saturated hydraulic conductivity Ks, the cell dimension lα and the time step
∆t;

σ : Q7 → Q is the deterministic transition function. Once the initial conditions
(total head, pressure head, conductivity and water content values) and the
boundary conditions are fixed, it is based on two elementary steps:

• σ1: the update of the soil hydraulic characteristics (i.e. the hydraulic con-
ductivity K, the water content θc and the specific retention capacity Cc),
depending on the pressure head through the characteristic equations;

• σ2: the application of the unsaturated soil flux equation 1, to update the
values of the total head hc and the pressure head ψc of the cell.

Starting the simulation, the sub-states condition depends on the initial values
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assigned to the total head hc, while the boundary conditions can be assigned
either in terms of mass flow coming in (infiltration) or out (exfiltration) from
the system (Neumann conditions), or fixing the total or pressure head values
on some cells of the system (Dirichlet conditions).

Once the initial and boundary conditions of the problem are defined, and the
global parameters are initialized, then the transition function can be applied
to the cells of the system. Further on the two elementary steps allowing the
evolution of the system in time (schematized in figure 2) will be analyzed.

Initial conditions: h, y

Characteristic equations:

q = q (y)

K = K (y)

Kc, qc, Cc updating

Unsaturated soil flux equation

hc, yc updating

s1

s2

Initial conditions: h, y

Characteristic equations:

q = q (y)

K = K (y)

Kc, qc, Cc updating

Unsaturated soil flux equation

hc, yc updating

s1

s2

Fig. 2. Schematization of the two elementary steps allowing the evolution of the
CA.

3.1 Update of the soil hydraulic characteristics (σ1)

In equation 1 it is necessary to specify the non-linear dependencies among
the assumed independent variable, total head hc, and terms characterizing
the hydraulic properties of the soil represented by the hydraulic conductiv-
ity K(ψc), the water content θc and the specific retention capacity Cc. The
hydraulic properties of the soil are essentially expressed by retention curves,
which in the case of moisture content are in a form like θ = θ(ψ), while for
relative hydraulic conductivity the relationship K = K(ψ) is obtained from
physically-based models. Many theoretical models for the constitutive equa-
tions θ = θ(ψ) and K = K(ψ) are available in literature.

The update of the hydraulic properties of the soil is not only necessary to
allow the evolution of the system, but also for the determination of the con-
vergence conditions. Infact, it can be easily proved that in a three-dimensional
scheme, for ∆x,∆y,∆z → 0, with the permeability along the three orthogo-
nal directions around the cell c varying linearly, the solution of the equation
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1 converges when t is finite and ∆t ≤ C(ψ)l2
a

6K(ψ)
, showing that ∆t value depends

on C(ψ) and K(ψ).

3.2 Application of the unsaturated soil flux equation (σ2)

If the hydraulic properties of the soil are updated, then the unsaturated soil
flux equation 1 can be applied to obtain for the analyzed cell the new value
of the independent variable, the total head hc, from which all sub-states are
depending on. The unknown term in the equation 1 is ∆hc, indicating the
total head variation in the cell between instants t and t + ∆t. This term is
achieved by the interaction of the analyzed cell with the neighboring ones.
Considering the generic α direction, the same total head variation is given by
the following equation:

∆hαc =
∆t

VcCc

[

qc +Kαc(ψc)

(

hα − hc

lα

)

Aα

]

(4)

Then, the total head variation ∆hc due to all neighboring interactions is ob-
tained as follows:

∆hc =
∑

α

∆hαc (5)

Hence, the new value of the total head of the cell in the instant t+∆t results:

hc ≡ hc + ∆hc = hc +
∑

α

∆hαc (6)

From equation 6 the pressure head (ψ = h− z) can be determined to update
again the soil hydraulic properties and to apply the equation 1 for the next
time step.

An example of application of the equation 1 is schematized in figure 3 for a
simple bi-dimensional case, where for the sake of simplicity source terms are
neglected and terms depending on spatial dimensions are simplified consider-
ing the cubic structure of the CA.
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Fig. 3. Transition function applied to the cell c in a bi-dimensional infiltration case,
where hi, hk > hc and hj , hp < hc.

4 CAMELOT: a software to simulate CA models

CAMELOT is a high performance simulation environment to model complex
systems based on the CA formalism. CAMELot allows to accurately model
many real-world problem by generalized CA. In our approach, a cellular al-
gorithm is composed of all the transition functions of the cells that compose
the lattice. Each transition function generally uses the same local rule, but
it is possible to define some cells with different transition functions. Unlike
early cellular approaches, in which cell state is defined as a single bit or a
set of bits, CAMELot defines the state of a cell as a set of typed sub-states.
This allows extending the range of applications to be programmed by cellular
algorithms. Furthermore, we introduce a logic neighborhood that may repre-
sent a wide range of different neighborhoods inside the same radius and that
may also be time-dependent. We have also implemented some mechanisms to
observe and control the evolution of the automaton. The run-time support is
implemented as a SPMD (Single Program, Multiple Data) program. The lat-
est implementation is based on the C language plus the standard MPI library
and can be executed on different parallel machines and cluster of workstations
using the Linux operating system. A copy of CAMELOT environment can be
downloaded at http://www.icar.cnr.it/spezzano/camelot/camelot.html.

The CAMELot simulation environment consists of:

• a graphic user interface (GUI) for editing, compiling, configuring, executing,
visualizing and steering the computation. The GUI allows, by menu pops,
to define the size of the CA, the number of the processors on which the
automaton must be executed, and to choose the colors to be assigned to the
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cell sub-states to support the graphical visualization of their values;
• a software library to integrate raster GIS images into the CA. The raster

information can consist of different variables such as altimetry, soil, tem-
perature, vegetation, etc. In CAMELot these variables are associated with
the sub-states where the transition function provides a dynamic alteration
of the information;

• a load balancing algorithm similar to the scatter decomposition technique to
evenly distribute the computation among processors of the parallel machine;

• a language, called CARPET [16], which can be used to define cellular al-
gorithms and to perform steering commands when complex space and time
events are detected.

CARPET is a language to program cellular algorithms and contains constructs
to extend the range of interaction among the cells, introducing the concept
of region, and to define algorithms to perform computational steering. It is a
high-level language based on C with additional constructs to describe the rule
of the state transition function of a single cell of a cellular automaton and
steer the application. In CARPET the state of a cell is described as a record
of typed sub-states (char, shorts (16 bits integers), integers, floats (reals),
doubles (64 bits real) and mono-dimensional arrays. CARPET program is
composed of a declaration part that appears only once in the program and
must precede any statement, a body program that implements the transition
function, and a steering part that contains a set of commands to extract
and analyze system information and to perform steering. Figure 4 shows an
example of application of these constructs. Two 3D regions are defined in a
three-dimensional cellular automata. The event expression checks whether the
maximum and the minimum of the rainfall sub-state in a region (zone1) are
equal. If they are equal, the computation is stopped. If the sum of the rainfall
values in another region (zone2) is greater than a threshold, then the alpha
parameter value is changed. In any case, the computation is stopped after
10000 generations.

4.1 Performance Analysis of the model

In this section a performance model used to predict the scalability and the
execution time of a CA model simulated by CAMELot is described. A val-
idation of the performance model is presented in the experimental section.
Analyzing the performance of a given parallel algorithm/architecture requires
a method to evaluate the scalability. The isoefficiency function [6] is one among
many parallel performance metrics that measure scalability. It indicates how
the problem size n must grow as the number of processor m increases in or-
der to obtain a given efficiency E. It relates problem size to the number of
processors required to maintain the efficiency of a system, and lets us to de-
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{
....

state (float rainfall, infiltration);
parameter (alpha 2.0, ....);
.....

region (zone1(10:20, 1:30, 5:50), zone2(1:4, 3:10, 1:50));
}
.....

steering

{
if (step > 10000)

cpt abort();
if (region max(zone1, rainfall) == region min(zone1,rainfall)

cpt abort();
else if (region sum(zone2, rainfall) > Threshold)

cpt set param(alpha, 3.5);
.....

}

Fig. 4. An example of use of steering commands in CARPET.

termine scalability with respect to the number of processors, their speed, and
the communication bandwidth of the interconnection network. Here, we use
the isoefficiency function to analyze the scalability of CA models simulated
by the CAMELot environment.

We assume that a CA model is represented in CAMELot by a grid of size
A×B × C cells, where A is the width, B is the height and C is the depth of
the grid. Furthermore, d represents the size (in bytes) of the state of a cell. On
a sequential machine we can model the computation time T1 for one time-step
of the cellular automata as:

T1 = tas + ABC(tf + tup)

where tf is the average computation time required to perform the transition
function on a single grid point; tas is the average time required at each step to
perform some simple operations, such as the increment of the iterations and
the zero setting of some variables; tup is the average time necessary to update
the state of each cell of the grid with the new values. So, defining t′f = tf + tup
we have:

T1 = tas + ABCt′f (7)

In the parallel implementation, the grid of the CA is decomposed along the
horizontal dimension, and partitioned among p tasks, with each task respon-
sible for a subgrid of size A

p
× B × C. Each processor has allocated a task

performing the same computation on each point and at each time step. Each
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subgrid is bordered in order to permit a local selection of the neighbors. The
main operations of the parallel algorithm for the run-time execution of the
CA are summarized in figure 5.

foreach time-step
foreach processor

foreach z,y,x
transition function(x,y,z,step)

end foreach
copy borders
exchange borders
copy CA

end foreach
end foreach

Fig. 5. The parallel algorithm for the run-time execution of the CA.

The parallel execution time of the parallel CA on a parallel machine with p

processors can be modelled by summing up the computation time of all these
functions as follows:

Tp = (tas +
A

p
BCt′f) + Tcb + Teb (8)

where Tcb is the time spent to copy the borders into a linearized data structure
and Teb is the time required to exchange the borders. In fact, each task, before
the execution of an iteration must send the borders of own portion of the
automata to the two neighboring tasks and receive the correspondent one
from the same tasks for a total of four messages and 4 B × C × d data. The
time required to exchange the borders, according to the Hockney’s model [8],
is:

Teb = 4(ts +BCdtb)

where ts is the startup time, that is, the time required to initiate the com-
munication, and tb is the incremental transmission time per byte, which is
determined by the physical bandwidth of the communication channel linking
the source and destination processors.

The time spent by the copy border function depends on the dimension of
the portion of the automata lying on a processor and on the total number
of substates, so it can be represented as an additive constant plus a linear
function of these variables.

Therefore we can represent the parallel execution time as:

Tp = tap +
A

p
BCt

′′

f + 4BCdtb (9)
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where tap includes all the times that do not depend on the size of the grid and
t
′′

f = t
′

f + dtcb; dtcb is the time for copying a cell of data (d is the number of
bytes and tcb is the time necessary to copy a byte).

The speedup on p processors can be evaluated as S = T1

Tp

and the efficiency as

E = S
p
. Using the expressions 7 and 9, the speedup and the efficiency can be

expressed respectively as:

S =
T1

Tp
=

tas + ABCt′f

tap + A
p
BCt

′′

f + 4BCdtb
(10)

E =
S

p
=

tas + ABCt′f

ABCt
′′

f + p[4BCdtb + tap]
(11)

The overhead function T0 of a parallel system represents the total sum of
all overhead incurred by the p processors during the parallel execution of
the algorithm and it depends on the problem size. If some really plausible
hypothesis are verified, i.e. tas is negligible with respect to the total time and
that t

′′

f
∼= t

′

f , then T0 will be given by:

T0 = pTp − T1
∼= p(tap + 4BCdtb) (12)

For scalable parallel systems, the problem size T1 must grow to keep the effi-
ciency fixed, as p increases. To maintain efficiency to fixed value (between 0
and 1), the following relation must be satisfied:

T1 = kTO (13)

where k = E
1−E

is a constant depending on the efficiency to be maintained.
From expression 7 and 12 we obtain:

ABCt′f
∼= kp(tap + 4BCdtb) (14)

The isoefficiency function is determined by abstracting the problem size as a
function of p, through algebraic manipulations in the equation 13. In our case,
examining the equation 14, we can notice that doubling the number of proces-
sors, we must double the width of the grid, in order to maintain the efficiency
to a constant value. Since the amount of computation increases linearly with
respect to p in order to keep the efficiency constant, our implementation is
highly scalable. From equation 10 we deduce that for a fixed problem size, the
speedup saturates at:

tas + ABCt′f

tap + 4BCdtb
(15)
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when increasing to infinity the number p of processors.

5 Numerical tests

Tests have been conducted in order to demonstrate that the cellular automata
based model achieves solutions very close to those obtained using the classi-
cal techniques. Specifically, two benchmarks (one- and two-dimensional cases)
were used. Furthermore, the performance model, described in the previous
section, is validated on a three-dimensional benchmark, obtained by consid-
ering the two-dimensional test area as a section of a three-dimensional plot,
with non-homogeneous boundary conditions. Finally a scalability analysis is
performed.

5.1 Evaluating the accuracy of the benchmarks

The one-dimensional benchmark used to evaluate the accuracy of the model
is described in [14]. It refers to an infiltration problem along a soil column and
it is based on the original Richards’ equation which does not allow a closed
analytical solution.

In order to verify the goodness of the model and for the estimate of errors pro-
duced by the CA model some reference numerical solutions were considered,
assuming a very dense grid and small time step.

The characteristic equations θ = θ(ψ) and K = K(ψ) taken into account for
these simulations are those proposed by van Genuchten and Nielsen [20], with
the retention curve θ(ψ) modified as suggested by Paniconi et al. [14].

The accuracy of the CA model was estimated by using both a first:

ε1(t) =
n
∑

i=1

| ψ(z, t) − ψref (z, t) |

n

and a second order norm error:

ε2(t) =
n
∑

i=1

[ψ(z, t) − ψref(z, t)]
2

n

where ψ and ψref are the simulated and reference pressure head at time t

respectively, for the i = 1..n soil profile points at level zi. The test problem
consists in an infiltration and redistribution simulation into a soil column
initially at hydrostatic equilibrium. The boundary condition at the surface is
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Table 1
Parameters of the one-dimensional benchmark

θr θs ψs, m n Ss, m
−1 ψ0, m Ks,mh

−1 Sbc L, m ∆z, m ∆t, s

0.08 0.54 -3.0 3.0 0.02347 -0.95 5.0 q = t
64 10.0 0.1 0.1

a time-varying specified Darcy flux q which increases linearly with time, while
the boundary at the base is maintained at a fixed pressure head value of ψ=0,
allowing drainage of moisture through the water table. The space grid and
time step have been chosen to guarantee the convergence of the system.

Figure 6 shows the comparison between CA simulations and reference nu-
merical solutions: the differences are very small for all the times analyzed, as
indicated by the first and second order norm error values shown in table 2.

Pressure head (m)
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32Time 0 1 2 4 10

Fig. 6. Comparison between CA simulations (solid lines) and reference numerical
solutions (points).

Table 2
First and second order norm error values for the benchmark

Time, h 1 2 4 10 32

ε1, m 0.0144 0.0189 0.0270 0.0122 0.0155

ε2, m2 0.2240 0.1934 0.3361 0.0498 0.0561

The two-dimensional benchmark was based on the physical setting and soil
hydraulic properties of the Jornada Test Site near Las Cruces, New Mexico,
and was taken from [15]. The test involves transient, two-dimensional infiltra-
tion of water into an extremely dry heterogeneous soil, composed by four soil
types with different hydrologic properties (table 3). A uniform infiltration rate
was used for an area extending 2.25 m from the left boundary of the domain.
All boundaries, except for the infiltration zone at the top of the model domain,
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were treated as no-flow. The characteristic equations considered are based on
the van Genuchten formulation [19] of Mualem [13] model. The relative soil
saturation for the entire cross-section obtained at 30 days after the start of
moisture infiltration was compared with the results given by the finite dif-
ference computer code PORFLOW [9], considered as the reference numerical
solutions. Figure 7 shows that the two sets of data compare very well with
each other both qualitatively and quantitatively.

Table 3
Parameters of the two-dimensional benchmark

Zone θs θr α,m−1 n Ks,md
−1

1 0.368 0.1020 3.34 1.982 7.909

2 0.351 0.0985 3.63 1.632 4.699

3 0.325 0.0859 3.45 1.573 4.150

4 0.325 0.0859 3.45 1.573 41.50
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Fig. 7. Comparison between CA simulations (solid lines) and reference numerical
solutions (points).

5.2 Validation of the performance model

To validate the use of our scalability prediction technique (subsection 4.1) and
to assess its accuracy, some experimental evaluations are carried out using a
three-dimensional benchmark, obtained by considering the two-dimensional
benchmark as a section of a three-dimensional plot, with a variable depth of z
m. Initial and boundary conditions are not modified, but the infiltration area,
still extending 2.25 m from the left boundary of the domain, is hypothesized
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having a depth of 0.50 m ahead and 0.50 m behind the central value along the
third dimension.

For the problem described we considered three different dimensions of the
automata: 64 × 160 × 150, 128 × 160 × 150 and 512 × 160 × 150. Icarus, a
parallel cluster with 16 nodes, each having two-processors Pentium 1.133 Ghz,
2 Gigabytes of memory Ram and Linux Operating System has been used in
the experiments.

Table 4 shows the estimated values of the parameters necessary to evaluate the
parallel execution time Tp for different number of processors using equation 9.
The t

′′

f value was estimated by measuring its computational cost for different
problem sizes and then using the Matlab toolkit to automatically calculate the
least-squares fit of the equation that defines t

′′

f with the experimental data.
tap was estimated by measuring its computational cost for different number
of processors and then calculating the least-squares fit of the equation that
defines tap with the experimental data. The tb values for the Icarus machine
was estimated using a ping-pong test.

Table 4
Estimated problem parameters

Parameter Value(µsec)

t
′′

f 1.544

tap 715.62

dtb 1.252

Tables 5, 6 and 7 show the measured and predicted execution times, and the
relative error associated with each prediction for different dimensions of the
automata.
Table 5
Execution time predictions for 100 iterations (64 × 160 × 150)

Num. procs Num. cells Measured Predicted Relative Error

per node (sec) (sec) (percent)

1 1536000 - - -

2 768000 129.58 130.67 0.85%

4 384000 70.22 71.39 1.66%

8 192000 42.65 41.74 -2.14%

16 96000 27.97 26.92 -3.76%

32 48000 20.49 19.51 -4.80%

The results show a good agreement between the model and the experiments.
In fact, the measured times were, in the worst case, about 2% for the largest
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Table 6
Execution time predictions for 100 iterations (128 × 160 × 150)

Num. procs Num. cells Measured Predicted Relative Error

per node (sec) (sec) (percent)

1 3072000 - - -

2 1536000 248.99 249.25 0.10%

4 768000 132.66 130.67 -1.50%

8 384000 73.35 71.39 -2.68%

16 192000 43.62 41.74 -4.31%

32 96000 29.00 26.92 -7.18%

Table 7
Execution time predictions for 100 iterations (512 × 160 × 150)

Num. procs Num. cells Measured Predicted Relative Error

per node (sec) (sec) (percent)

1 12288000 - - -

2 6144000 964.16 960.70 -0.36%

4 3072000 489.91 486.40 -0.72%

8 1536000 251.77 249.30 -0.98%

16 768000 132.02 130.70 -1.00%

32 384000 72.77 71.40 -1.88%

dimension and about 5% and 7% for the other two dimensions. Since it is the
most accurately estimated model term, the prediction becomes increasingly
accurate with larger problems. A more accurate prediction model is obtainable
using a refined model of communication cost [4].

From equation 15, we calculate that the value of the speedup is bound to
20 for the first case and to 39 and 157 respectively for the second and third
case. The lower value of speedup for the first case is due to the much larger
communication/computation ratio. We can obtain a better value of speedup
increasing the granularity, that is, allocating a larger number of cells for node.
We can use formula 14 to calculate the exact size of A to obtain a desired
efficiency. For example, from this formula, maintaining B=160 and C=150 we
obtain a size of A equal to 592 to have an efficiency of 85% on 32 processors.
The model can be helpful to calculate the correct size of automata in order
to obtain a given efficiency for a specific architecture. Furthermore, we can
determinate, for a specific dimension, the optimal number of processors that
permits to reach a specific efficiency.
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5.3 Scalability Analysis

With the aim of testing the scalability of the proposed CA model, we sim-
ulated by CAMELot, on the Icarus parallel machine, three different models
characterized by size equal to 64 × 160 × 150, 128 × 160 × 150, 512 × 160
× 150 respectively, each running with a different number of processors (1, 2,
3, 4, 8, 16, 32). The simulations are summarized in figure 8 where speedup
values achieved for each automata dimension, changing the number of uti-
lized processors, are shown. The same figure shows that the larger dimension
of automata considered for the simulations is sufficient to reach a scalability
very close to the optimal with the maximum number of processors available.
The same analysis of the computation-process scalability shows that with the
lowest automata resolution (1,536,000 cells) an acceptable efficiency (see table
8) can only be reached using up to 8 processors (about 70%), and therefore a
higher number appears unsuitable. This is due to computing times necessary
to run the same automata with 16 or 32 processors, which are not capable of
balancing the communication times of the parallel system. Instead, for higher
automata resolutions, suitable efficiency values are observed increasing the
number of processors to 32 (about 82%) which justify their use.

Number of processors
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28

32

Automata dimensions: 128 x 5 x 101

Automata dimensions: 512 x 5 x 101

Automata dimensions: 1024 x 5 x 101

Ideal case

Fig. 8. Comparison between CAMELOT speedup values obtained through the CA
model for different automata sizes and the ideal speedup.

6 Quantized model

From equation 10 and 15 it can be noticed that the speedup, and conse-
quently the efficiency, is limited from the time necessary for exchanging mes-
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Table 8
Efficiency values for different automata sizes

Number of processors Automata dimensions Automata dimensions Automata dimensions

64 × 160 × 150 128 × 160 × 150 512 × 160 × 150

1 100.00% 100.00% 100.00%

2 92.39% 96.00% 98.98%

4 85.25% 90.09% 97.40%

8 70.17% 81.47% 94.77%

16 53.50% 68.50% 90.36%

32 36.52% 51.52% 81.97%

sages among processors (about 4BCdtb). In practice, an entire soil column of
size BC exchanges messages with the neighbors. Reducing the number of cells
that exchange messages would have a beneficial effect on the speedup.

To this aim, we introduced a quantization strategy, based on the quantization
systems theory [22]. Such a process, called ”quantization”, starting from the
discretization of the states of a continuous process, fixes their evolution only
through multiples of a specific value, called ”quantum size”. In a CA system
local interactions within the neighborhood, carried out through the transition
function, involve each fa in temporal changes of the state: if during a time step
the application of the transition function does not allow the cell to evolve from
state D at least to state D±1 (where the difference between two states is given
by the quantum size), it maintains its current state, and does not exchange
information with the neighborhood. The quantization makes cellular automata
asynchronous, because for each iteration each fa decides, with respect to the
value of its state and those of adjacent cells, to be updated or to remain
”frozen” at the previous time step.

For the proposed model the quantization procedure was applied to the main
flow parameter represented by the total head gradient. Specifically, if the head
difference between two neighbors fa is not greater than a given threshold,
then the same automata are hypothesized as being at rest. The threshold
represents the quantum size and can be static or dynamic: the former is given
by a constant value Hq on the whole automata; the latter instead depends on
the fa state during the simulation. The dynamic threshold has been assumed
to be inversely proportional to the fa saturation degree, in a form like this:

quantum = k
θsat

θ
(16)

The use of dynamic quantization extends the CA model, which becomes both
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asynchronous and non-uniform: the transition function changes in each fa,
because in each automaton the threshold depends on a local factor represented
by the degree of saturation. It seems to be that the fa decides each time,
according to its degree of saturation, what the associated threshold value
should be. However, increasing the threshold value produces two opposite
effects: on the one hand the number of messages exchanged decreases and on
the other the model performs less well.

We have applied the quantization techniques for the solution of the one-dimen-
sional benchmark, with the aim of investigating the effects on the model both
in terms of number of messages exchanged and in terms of error of the model.
We have measured the error, when the value of static threshold Hq is increased,
normalized with regard to a cell column.
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Fig. 9. Reduction in exchanged messages and variation of error norm ε1 values for
the one-dimensional benchmark, at a time of 4 hours, varying (a) static threshold
Hq values and (b) dynamic threshold parameter k values.
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Fig. 10. Reduction in exchanged messages and variation of error norm ε1 values for
the one-dimensional benchmark, at a time of 10 hours, varying (a) static threshold
Hq values and (b) dynamic threshold parameter k values.

Figures 9, 10 and 11 (a and b) show the reduction in the number of messages
exchanged along a column of cells together with the norm error ε1 values (in
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Fig. 11. Reduction in exchanged messages and variation of error norm ε1 values for
the one-dimensional benchmark, at a time of 32 hours, varying (a) static threshold
Hq values and (b) dynamic threshold parameter k values.

which the reference values are obtained from the simulation without quantiza-
tion), when the values of static threshold Hq and dynamic threshold parameter
k are changed, respectively at times of 4, 10 and 32 hours. Furthermore, both
for static and dynamic thresholds, the percentage reduction in exchanged mes-
sages at the same simulation times are shown in table 9. Obviously, messages
exchanged for Hq=k=0 are the same.

For all the times analyzed, starting from a very small threshold value (Hq

and k equal to 0.01), an appreciable reduction in the number of exchanged
messages was obtained. However, this appeared less significant for increasing
simulation times. For threshold values greater than 0.001, against a constant
increase in the norm error, the further reduction in the messages exchanged
is less evident, specially during the first hours of simulation. The reduction in
exchanged messages varying the thresholds as well as specific effects produced
by static and dynamic approaches have not to be thought of as general results,
but are associated to the problem analyzed.

Dynamic threshold has a better behavior (considering the same number of
messages, it has a lower error) but this improvement is more evident after
many hours of simulation. However, using dynamic threshold, the error is
greater; in fact, with k=6 simulation diverges after 12 hours.

7 Conclusions

We have presented a discrete model for unsaturated flow that is particulary
suitable to be used with the CA paradigm in a parallel computing environ-
ment. Based on this CA model, 3D parallel simulations have been carried out
by the CAMELot environment. We have demonstrated the accuracy of the
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Table 9
Percentage reduction in exchanged messages at times of 4, 10 and 32 hours, both
for static and dynamic threshold

Hq / k Static Dynamic Static Dynamic Static Dynamic

threshold threshold threshold threshold threshold threshold

0 - - - - - -

0.001 67.61 70.00 30.22 31.48 9.37 9.76

0.01 72.74 75.11 35.81 37.36 11.13 11.61

0.1 77.45 79.79 42.99 44.91 13.72 14.32

0.5 80.57 82.92 50.15 52.59 17.37 18.20

1.0 81.89 84.26 54.00 56.83 20.63 21.77

1.5 82.66 85.05 56.35 59.52 23.72 25.29

2.0 83.20 85.62 58.12 61.63 26.87 28.89

2.5 83.63 86.07 59.59 63.46 29.64 32.24

3.0 83.97 86.45 60.84 65.13 32.22 35.49

4.0 84.52 87.07 62.89 68.01 37.43 42.79

5.0 84.96 87.58 64.41 71.96 43.29 52.96

6.0 85.31 88.04 65.87 78.68 50.43
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Fig. 12. Comparison between static and dynamic threshold simulations plotting the
number of exchanged messages vs. the norm error values at a time of 4 hours.

CA model by two significant benchmarks. Also, we have analyzed the scal-
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Fig. 13. Comparison between static and dynamic threshold simulations plotting the
number of exchanged messages vs. the norm error values at a time of 10 hours.
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Fig. 14. Comparison between static and dynamic threshold simulations plotting the
number of exchanged messages vs. the norm error values at a time of 32 hours.

ability of the model using an analytical performance model. The model has
been evaluated using a three-dimensional benchmark. Our preliminary results
showed a good agreement between the model and the experiments. To further
improve the performance on the model a quantized version has been carried
out. Results have shown that the quantization techniques increase the perfor-
mance of the model reducing the execution time. Finally, this study has shown
that CA are a useful paradigm for modeling and simulation of unsaturated
flow processes and CAMELot is a flexible and a powerful tool for simplifying
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the construction of new models and easing their verification.
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