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A B S T R A C T

Classification-oriented Machine Learning methods are a precious tool, in modern Intrusion Detection Systems
(IDSs), for discriminating between suspected intrusion attacks and normal behaviors. Many recent proposals
in this field leveraged Deep Neural Network (DNN) methods, capable of learning effective hierarchical data
representations automatically. However, many of these solutions were validated on data featuring stationary
distributions and/or large amounts of training examples. By contrast, in real IDS applications different kinds
of attack tend to occur over time, and only a small fraction of the data instances is labeled (usually with
far fewer examples of attacks than of normal behavior). A novel ensemble-based Deep Learning framework is
proposed here that tries to face the challenging issues above. Basically, the non-stationary nature of IDS log
data is faced by maintaining an ensemble consisting of a number of specialized base DNN classifiers, trained
on disjoint chunks of the data instances’ stream, plus a combiner model (reasoning on both the base classifiers
predictions and original instance features). In order to learn deep base classifiers effectively from small training
samples, an ad-hoc shared DNN architecture is adopted, featuring a combination of dropout capabilities, skip-
connections, along with a cost-sensitive loss (for dealing with unbalanced data). Tests results, conducted on
two benchmark IDS datasets and involving several competitors, confirmed the effectiveness of our proposal
(in terms of both classification accuracy and robustness to data scarcity), and allowed us to evaluate different
ensemble combination schemes.
. Introduction

Timely recognizing security breaches and attacks is a task of utmost
mportance these days, owing to the high risk of cyber-security threats
o which most modern companies and organizations are exposed daily.
ntrusion Detection Systems (IDSs), i.e., hardware and software systems
ble to identify malicious behaviors are widely reckoned as a precious
ool in this scenario, in order to leverage the large amounts of streaming
og data concerning network connections and/or computer/application
sage.

In the last few decades, there has been a growing interest to-
ards classification-based Machine Learning (ML) techniques, owing

o their capability to learn general models of malicious behaviors,
hile curbing the number of false alarms. As discussed in [1], the

esearch in this area has been dominated for years by the usage of
hallow learning techniques, which however typically need high levels
f human-expert interventions, especially in the preparation of the
raining data through suitable feature-engineering activities. These ac-
ivities are clearly intensive and expensive, and are strongly determined
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by the levels of data-analytics skill and of domain knowledge possessed
by these experts.

This explains why recent advances in the ML field have paid increas-
ing attention to Deep Neural Networks (DNNs), which have been shown
able, in diverse application domains, to learn effective hierarchical
feature representations of the data automatically. This capability to
deal adequately with ‘‘raw’’ high-dimensional representations of the
data becomes, indeed, particularly useful when working with the logs
of complex system networks, as noticed in [1]. In fact, in a recent
comparative analysis conducted in [2] over several learning-based IDS
approaches, DNN-based methods were empirically shown capable of
ensuring better detection accuracy than traditional supervised classifi-
cation methods, across a wide range of attack types. On the other hand,
thanks to the availability of high-performance computing resources and
of software libraries providing various template DNN components, the
analyst is allowed to develop and test easily more complex (and deeper)
neural classification models than in the past.
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1.1. Challenges and limitations of state-of-the-art solutions

Unfortunately, most of the DNN-based approaches to the discovery
of intrusion–detection classifiers (implicitly) assume that the behaviors
under analysis are stationary, and hence they cannot deal with changes
in the distribution underlying data. Moreover, many of the solutions
proposed in the literature were only validated on datasets featuring
large enough amounts of labeled training examples.

By contrast, in most real-life intrusion–detection scenarios, only a
small fraction of the log data instances is labeled (with far fewer exam-
ples of attacks than normal behavior) and, more importantly, different
kinds of concept drifts are very likely to occur over the time, mainly
owing to the surge of totally new attack types or of variants of old
attack types that had not been occurring for some time. In particular,
the latter kind of (recurrent) drift makes the idea of just resorting
to an incremental learning scheme unsuitable — see Section 2.2 for
a deeper discussion of critical issues affecting the discovery on an
intrusion-oriented classifier.

A possible way to deal with these challenging issues (and in particu-
lar with non-stationary data) is to adopt an ensemble-learning strategy,
as discussed in [3]. As a matter of fact, ensemble-based classifiers (a.k.a.
Multiple Classifier Systems) are a powerful kind of hybrid intelligent
systems for information fusion that enjoy several valuable features [4,
5]: robustness to noise, capability to neatly improve weak classifiers,
scalability (amenable to parallel/distributed implementations), incre-
mentality. In particular, the latter feature has been recently exploited
to deal with non-stationary data [6,7], by mainly making the ensemble
include and harmonize models trained over different data chunks, in
a way that different kinds of concept drifts (including recurrent ones)
can be handled effectively.

However, hybridizing such an ensemble learning scheme with DNN
base models is not straightforward, since dividing the input data stream
into chunks further reduces the number of labeled samples available
for training each DNN classifier — hence exacerbating the risk of
discovering overfitting base classifiers, which is indeed high when
training a model with a lot of parameters on few examples.

On the other hand, since the attack class mixes up different attack
types/modes that change over time, each data chunk hardly covers this
class as a whole, so that any classifier induced from this chunk will only
play as a specialized predictor (which may return unreliable predictions
on test instances that are ‘‘outside the scope’’ of the chunk). This makes
the simple combination schemes unsuitable, such as weighted vot-
ing/averaging, adopted in most of the DNN-based ensemble approaches
to IDS.

To the best of our knowledge, a limited number of works proposed
the usage of Deep Ensemble Learning strategies for IDSs, and none
of them addressed the problem of learning from non-stationary data
and low amounts of labeled samples, and that of combining highly
specialized base classifiers.

1.2. Proposed approach and contribution

In order to face the challenging issues mentioned above and over-
come the limitation of state-of-the-art approaches to the induction of
IDS-oriented classifiers, an incremental ensemble-based deep learning
framework is proposed in this work, which leverages and extends the
chunk-based induction strategy adopted in [6] and in other approaches
(e.g., some of those overviewed in [7]).

The proposed framework essentially induces and combines a num-
ber of weak (specialized) base DNN classifiers on different data chunks,
resulting from a temporal segmentation of the input stream, as a way
to deal with the non-stationary nature of IDS log data.

In order to better face the small and imbalanced nature of the train-
ing data in IDS scenarios, the DNN architecture of the base classifiers
has been designed to include both a combination of dropout layers
49
and residual-like connections. Moreover, these classifiers are trained by
using an ad-hoc cost-sensitive (imbalance-aware) loss function.

In addition, we define and study different combiner schemes for
fusing the base classifiers in the ensemble:

• several alternative trainable models, including an adaptation
of the classical Mixture-Of-Experts [8] (named ensemble_moe)
and two variants (named ensemble_feature and ensemble_stack) of
stacked generalization, all aimed at discovering some flexible and
adaptive combination scheme for computing the final classifica-
tion of any new instance, based on both the predictions of the
(maybe very heterogeneous) base classifiers and on the raw data
features of the instance itself;

• a cheaper non-trainable combination scheme (named
ensemble_max) that simply assigns any new instance to the class
that received the highest membership probability from all of the
base models.

To the best of our knowledge, there has been no previous attempt
to combine a chunk-based learning scheme with the discovery of DNN
ensembles, while suitably dealing with the many challenging issues
mentioned above. And yet, in our opinion, this was a promising re-
search topic (as confirmed by our test results), considering the fact that
deep learning methods have been proven very effective in classifying
high-dimensional data (like those arising in network-traffic logs [9]),
while chunk-wise ensemble learning was shown capable to effectively
and efficiently support classification tasks over non-stationary data [6,
7].

As a further contribution, we also discuss the results of an extensive
experimentation conducted, on two benchmark IDS datasets, to assess
the validity of the proposed framework, compare it with a number
of competitors and study the effect of using different combination
schemes. Besides allowing us to assess the feasibility and validity of our
idea of hybridizing chunk-wise ensemble learning and deep learning
methods, our experimental findings let us be confident in the fact
that our work could provide a basis for developing effective, versatile,
robust and efficient enough intelligent systems for the analysis of IDSs
logs. Notably, our experimental study also includes an empirical anal-
ysis of the intrusion-oriented classifiers performances when reducing
consistently the amount of labeled data used for training them; to
the best of our knowledge, such analysis has not been given adequate
attention in previous DNN-based approaches to IDS.

1.3. Organization of the paper

The rest of the paper is structured as follows. Section 2 introduces
the specific intrusion-oriented classification problem addressed in our
work in a more precise and formal way, and discusses the main techni-
cal issues that make it hard to solve. Some relevant related work in the
field is overviewed in Section 3. The proposed chunk-wise ensemble
learning scheme is presented in Section 4, which also discusses the
technical solutions that have been exploited to allow it address effec-
tively the challenging issues described in the former section. Section 5
describes, in a detailed way, both the DNN architecture that we are
proposing for the base classifiers of the ensemble, and different possi-
ble (NN-based) schemes for combining the predictions of the former
classifiers. The experimental setting and findings are described and
analyzed in Section 6. Finally, Section 7 presents some concluding
remarks (including a discussion on the novelty and significance of our
work) and a number of directions for future research.

2. Problem statement and challenging issues

2.1. Intrusion detection as a binary classification task

According to the usual setting of Network Intrusion Detection Systems
(NIDSs), our work aims at supporting the recognition of intrusion



Information Fusion 72 (2021) 48–69F. Folino et al.

n
w
e
m
t
c
m
f
e

t
a
a
t
(
c
s
t
c

a
H
c

attacks in a computer network, based on traffic-log data.1 Following
a common approach in the literature [10], we specifically tackle the
(binary) classification problem of deciding whether a given network
connection (or network flow) is associated with an intrusion attack or
ot, based on a fixed-length representation of the connection itself,
hich may encode different parameters of the connection (e.g., its
ndpoints and communication protocol) and aggregate features sum-
arizing the flow of data exchanged in the connection. In fact, even

hough fine-grained classification schemes with multiple attack classes
ould be used as well, such a holistic binary scheme somewhat curbs the
ain limitation of supervised-learning IDS approaches that descends

rom their need to be provided with a sufficient amount of training
xamples for each of the classes (see paragraph Rationale below).

Regarding the space 𝑋 of network connections as conceptually par-
itioned into the two security-related classes of normal connections and
ttack connections (or simply attacks), we specifically want to discover
(fuzzy) classification model (or classifier) for discriminating between

hese two classes, from a given collection of example data instances
i.e. connection tuples), labeled each with its respective ground-truth
lass. Precisely, this discovery task amounts to inducing, from a given
ample of labeled connections, a classification model encoding a func-
ion of the form 𝑚 ∶ 𝑋 → [0, 1] which maps any (possibly non labeled)
onnection 𝑥 ∈ 𝑋 to an anomaly-oriented score 𝑚(𝑥) representing a sort

of (possibly not calibrated) estimate of the probability that 𝑥 is (linked
to) an intrusion attack.

Hereinafter, we assume that the reference hypothesis space of this
inductive learning task consists of a specific kind of Deep Neural Net-
works (DNNs) and of suitable ensemble-like combinations of them, the
architectures of which are discussed in full detail in Section 5.

Rationale. The general problem setting sketched above is similar to
those considered in previous ML-based NIDS approaches, if abstracting
from the peculiar choices that have been made here relatively to the
representation of network traffic data and the number of attack classes
to predict. In fact, our framework could be easily extended to work in
multi-class classification settings and with finer-grain representations
of network connections (see Section 7) —the latter extension mainly
entails equipping each classifier with a suitable embedding layer.

However, trying to discriminate between different attack classes
may be impractical in many real-life intrusion detection scenarios, as it
would require experts (or automatic labeling mechanisms) capable of
providing a sufficiently large and updated number of correctly labeled
examples for each of the different attack classes and for the normal one.
This requirement is far stronger (and hardly feasible in many real-life
NIDS settings) than just having training examples classified in a binary
fashion (i.e. as either normal or attack), seeing as most connections
associated with security attacks can be recognized on the basis of the
damages that they have originated over the time — even though it is
not always easy to assign such insecure connections to one among a
given collection of attack (sub-)classes.

On the other hand, we believe that the choice of adopting a binary
‘‘attack-vs-normal’’ classification setting (hence renouncing to a fine-
grain intrusion detection scheme that can directly reveal the type of
attack associated with an insecure connection) helps soften the well-
known incapability of multi-class classification approaches to intrusion
detection to recognize a novel attack class until retraining the classifier
with a sufficient number of examples of this class [10]. Indeed, a
binary classifier has some chance of assigning the instances of an
emerging attack type to the global class of attacks, to the extent that
these novel instances share distinguishable patterns of deviance (w.r.t.
normal behaviors) with the attack examples that were used to train the
classifier.

1 In fact, our approach can be also applied to other kinds of log data (such
s the system/application logs usually considered Host-Based and Hybrid IDS).
owever, we here prefer to focus on network traffic data for the sake of
oncreteness and better readability.
50
2.2. Challenging issues

In many real-life intrusion–detection scenarios, the task of induc-
ing a DNN-based classification model of the kind discussed above
herein (i.e. a model for discriminating between normal connections
and attacks) is hardened by a number of challenging issues, which are
summarized below:

(I1) Attack patterns change over the time. It is natural to expect that
novel types/modalities of attacks tend to continuously emerge
over the time, and that the distribution of the attack class is
non-stationary. This calls for devising a learning scheme that
is robust to major changes of this distribution, a.k.a. concept
drifts, which may severely undermine the accuracy of a classifier
induced from historical training data. Moreover, attack patterns
that have occurred in the past often come back, possibly with
minor variations, after a relatively long period of absence. Such a
form of recurrent concept drift makes purely incremental learning
schemes unsuitable, owing to their limited memory capabilities.
This limitation is particularly severe in the case of DNN models,
which are very likely to incur in catastrophic forgetting phe-
nomena [11] when trained in a purely incremental fashion —
see Section 3.2 for more details in this respect. By contrast,
chunk-based ensemble learning schemes [7] have proven to be an
effective, efficient and versatile way to deal with non-stationary
data and recurrent concept drifts. The core idea underlying these
schemes is to segment the input stream of training examples into
chunks, induce a separate base classifier, say 𝐵𝑀𝑖, from each of
the chunks, say 𝐷𝑖, and use a dynamical ensemble strategy to
select and combine a subset of the discovered base classifiers.
This processing flow, exploited and extended in our framework,
is sketched in Fig. 1 and discussed in Section 4.1.

(I2) Scarcity of training data Even though labeling sample connections
as either normal or attack is easier than labeling them according to
a multi-class classification scheme (with multiple attack classes),
this annotation task may well be rather expensive in terms of
required time and user skills. As a consequence, the fraction of
novel connection instances that can be associated with a reliable
class label (and hence regarded as fresh training examples) may
be rather small. This clearly calls for devising a DNN architecture
and training scheme for the base classifiers that can work well
with small amounts of training data, while reducing the risk of
incurring into overfitting, which is indeed very high when using
few data to train a neural network with millions of parameters.

(I3) Class imbalance The difficulty of having (labeled) examples exac-
erbates for the class of the attacks, seeing as malicious network
connections tend to occur relatively rarely, together with a far
larger number of non-malicious connections. The imbalance be-
tween the classes of the normal connections and of the attacks is
likely to reflect in the training dataset, featuring a wide majority
of the examples of the former class.

(I4) Chunk-derived classifiers likely focus on sub-regions of the attack
class Clearly, the data distribution of the attack class is expected
to be both very heterogeneous and non-stationary, owing to the
fact that it mixes up different attack types/modes, and that the
latter change over the time. In particular, as noticed in [12] and
reflected in many NIDS datasets [13], many types of intrusion
attacks tend to manifest in the form of bursts of malicious network
connections covering limited periods of time — consider, for
example, the case of Brute-Force (SSH) attacks and (Distributed)
Denial-of-Service attacks. Thus, each data chunk is very likely
only to provide evidence for specific attack modes, and hardly
covers the variety of all possible attack patterns. Consequently,
the discovered base classifiers act as specialized predictors, which
are good at recognizing the attack patterns covered by the re-
spective data chunk, but may return unreliable predictions on
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Fig. 1. Reference chunk-wise ensemble learning scheme: information flow.
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instances that ‘‘are outside the scope’’ of the chunk on which
they were trained. This issue calls for equipping the ensemble
of chunk-derived classifiers with a combiner that can possibly
account for the regions of competence of the classifiers when
fusing the predictions that they return for a new data instance.
Notably, such a capability of the combiner would become particu-
larly useful in distributed IDS scenarios [5], where the specialized
nature of the base classifiers also comes from the locality of the
data used to train them.

3. Related work

Major ensemble-based approaches to development of Intrusion De-
tection Systems in the literature are discussed in what follows, in
two separate subsections. The first subsection is devoted to illustrating
those approaches combining multiple traditional (shallow) models and
training algorithms developed in the field of Machine Learning (ML),
whereas the latter subsection focuses on the usage of DNN’s ensembles.
Section 3.3 then presents a summary discussion on the gap among
these state-of-the-art solutions and certain core challenging require-
ments (condensed in the four issues of Section 2.2) of real-life IDS
applications.

3.1. Ensembles of ML models for IDS

In general, ensemble-based classifiers (a.k.a. Multiple Classifier Sys-
tems) constitute a form of hybrid intelligent systems for information
fusion that enjoy several valuable features [4,5]: robustness to noise,
capability to improve weak classifiers neatly, and scalability (amenable
to parallel/distributed implementations). Moreover, when dealing with
non stationary data, one can think of building the ensemble incremen-
tally, as proposed in [6,7], by making it include and harmonize models
trained over different data chunks, in such a way that different kinds
of concept drifts (including recurrent ones) can be handled effectively.

In general, IDSs can benefit from using information fusion and,
in particular, ensemble-based methods for a number of reasons [4,5].
First, such methods work well both even when a few data are available
and when a huge number of data has to be analyzed; furthermore,
they can be easily implemented so as to exploit the advantages of
distributed environments such as parallel, GPGPU architectures, and
P2P and Cloud computing architectures. In addition, they can model
different abstractions or parts of the instance space and then combined
51

together, to ensure better predictions. c
The rest of this subsection briefly describes some major ensemble-
based approaches to intrusion detection, which all rely on using shallow
Machine Learning (ML) models and algorithms. Table 1 offers a sum-
marized view of these approaches (and some more details on their
implementation and experimental validation). More specifically, for
each reviewed approach, the table reports: the kind of models em-
ployed and how they are combined (under columns Combined Models
and Combination Strategy, respectively), the dataset(s) and evaluation
metrics used for experimentally validating the approach, and three
columns corresponding to the general issues I1, I2 and I3 defined
in Section 2.2, respectively. The latter three columns are devoted to
summarizing the features (if any) of the approach that allows it to cope
with these challenging issues, which our research work is ultimately
meant to address. Notice that issue I4 (concerning the need to combine
specialized/local base models) has not been considered in this table,
because it only concerns the (very few) approaches that train the base
models with temporally/spatially defined partitions of the dataset — so
that almost all the cells in the column would give no information.

Standard ensemble learning approaches rely on training multiple
base classifiers and using an either fixed or trainable combination
function to merge the predictions of these classifiers, on any new data
instance 𝑥, into a final decision for 𝑥 (this strategy is named Predictions
usion in the table).2

Such a standard ensemble learning strategy is used in all the ap-
roaches reviewed here but the one by Costa et al. [14], where a hier-
rchical classification framework is defined that combines associative
ule learning and probabilistic models according to a sort of Cascade

strategy. Specifically, the approach in [14] first induces an ordered list
of association-based classification rules (CARs) for splitting the instance
space in (possibly overlapping) regions with class-homogeneous data
instances. A probabilistic classifier is then induced for each rule, out of
the training instances covered by the rule. The list of CARs and their as-
sociated probabilistic classifiers constitute a hierarchical classification

2 Two very popular combination criteria are majority voting (𝑥 is assigned
o the majority class among those predicted by the base classifiers), and
ssociated weighted variants; (Bayesian) averaging (𝑥 is assigned to the class
ith the maximum average posterior probability, assuming that all the base

lassifiers can estimate the posterior class probabilities). belief (𝑥 is assigned to
he data class with the maximum belief value, where per-class belief values are
omputed by estimating the probability that an instance assigned to a given

lass actually belongs to the class).
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Table 1
Ensembles of ML models for IDS: main properties and mechanisms adopted to cope with the issues defined in Section 2.2. For the sake of comparison, the same kinds of information
are also reported for our approach.

Approach Combined models Combined strategy Dataset(s) Evaluation
metric(s)

Pre-processing Changing &
recurring behaviors
(I1)

Scarcity of labeled data (I2) Class imbalance
(I3)

Costa
et al.
[14]

(Ordered list of)
CAR classification
rules + a
probabilistic
classifier per rule

Cascade
training/classification:
select the probabilistic
model associated with
the first rule covering
the test instance

KDD’99 ACC, AUC Standard
preprocessing

Not addressed Not addressed CARs are found
with a sequential
covering algorithm
and
correlation-based
selection criterion

Borji [15] ANN, SVM, DT
and k-NN
classifiers

Predictions fusion via
majority voting,
Bayesian averaging or
belief rule

DARPA’98 DR, FAR Standard
preprocessing

Not addressed Not addressed Not addressed

Sivatha
Sindhu
et al.
[16]

Multiple shallow
NNs (trained via
bagging) + DT
classifier

Hybrid: Predictions’
fusion via majority
voting for combining
the NNs, and DT
training on NN
ensemble’s output

KDD’99 DR, FAR,
TP, TN, FP,
FN

Dimensionality
reduction via
genetic
algorithm

Not addressed Data augmentation before
training the final DT
classifier (randomly
generated examples, labeled
with the NN ensemble)

A class-weighted
error is used in
the training
procedurea

Folino
et al.
[17]

J48, JRIP, NBTree,
NB, 1R, LMT,
LogR, DS and 1BK
classifiers, all
trained on
temporal data
chunks

Predictions fusion
through a ‘‘meta-learnt"
GP-tree combiner

ISCX IDS AUC,
AUC-PR

Standard
preprocessing

Temporal ensemble
(base models
trained on different
data chunks)

Not addressed Imbalance-aware
fitness metric used
in the search for
an optimal
combiner

Zhou
et al.
[18]

C4.5, RF and
Forest PA
(penalizing
attributes)
classifiers

Predictions fusion via
average-of-probabilities
rule

NSL-KDD,
AWID,
CICIDS
2017

ACC, P, DR,
F1, FAR

Bat-inspired
procedure for
selecting data
features
automatically

Not addressed Not addressed Not addressed

Our
approach

Multiple DNNs
trained on
temporal data
chunks

Predictions fusion via a
trainable (MOE or FF)
sub-net or
max-probability rule

CICIDS
2017,
ISCX IDS

AUC,
AUC-PR, F1

Standard
preprocessing

Temporal ensemble
(base models
trained on different
data chunks)

Dropout layers and
skip-through connections
within each base model
(providing additional
ensemble-like capabilities)

Data resampling,
imbalance-aware
loss function

aIn principle, the bagging procedure for learning the NN ensemble could be easily combined with a resampling mechanism, but this is not explored in the paper.
model, which allows for classifying each new instance 𝑥 as follows: (i)
irst all the CARs are applied to 𝑥 sequentially, until a rule 𝑟𝑥 covering 𝑥
s found; (ii) the class-membership probabilities of 𝑥 are then computed
y using the probabilistic classifier associated with 𝑟𝑥. Notably, the CAR
ules are built up by using a variant (devised to retain only positively
orrelated patterns) of A-priori algorithm, combined with a sequential
overing rule induction scheme. Both mechanisms should make the
iscovery of these rules pretty robust to class imbalance issues. Indeed,
xperiments on several datasets, including KDD’99, confirmed the abil-
ty of the approach to effectively recognize rare classes. In a sense,
imilarly to our setting, the probabilistic classifiers play as local models,
rained each on a specific ‘‘region’’ of the instance space; however, there
s no need to combine the predictions of these models, since any new
nstance is classified by only using one of them (chosen according to
he CAR list).

All the works described in the following adopt the standard predic-
ions fusion strategy of classical ensemble learning methods.

In particular, an ensemble of ANN, SVM, Decision Tree (DT) and
-NN (1 Nearest Neighbor) classifiers is defined in Borji et al. [15],
or detecting attack instances in the DARPA dataset. Three alternative
ombination schemes are considered for integrating the base classifiers’
utput: Bayesian averaging, majority voting and belief rule.

Sivatha Sindhu et al. [16] adopt an ensemble of shallow neural
etworks, combined according to a voting mechanism. In order to select
he optimal subset of the features from the dataset, a genetic-algorithm
rocedure is exploited. The trained ensemble is used to produce a
efined version of the training set, which includes the original instances
nd a number of randomly generated ones (labeled all with the class
redicted by the ensemble). This augmented training set is eventually
52
employed to train a Decision Tree (DT) classifier, by using the gain-
ratio variant of algorithm C4.5. data augmentation before training the
final DT classifier (randomly generated examples, labeled with the NN
ensemble). ‘‘A class-weighted error is used in the training procedure; in
principle, the bagging procedure for learning the NN ensemble could be
easily combined with a resampling mechanism, but this is not explored
in the paper’’

A further heterogeneous ensemble method for NIDSs is proposed
by Zhou et al. [18]. The method consists in training different kinds
of shallow classifiers, learnt by using algorithms C4.5, Random Forests
(RF) and Forest Penalizing Attributes, and then employing an average-
of-probabilities (AOP) rule for combining their predictions. It is worth
noticing that, before training the ensemble, a heuristics (bat-inspired)
feature selection procedure, named CFS-BA, is exploited to pre-process
the given dataset optimally. This specialized pre-processing capability
seems to boost the performances of this method, which is empirically
shown to obtain very good results over different benchmark datasets
(cf. Table 1).

Folino et al. [19] describe a temporal ensemble approach to NIDS,
where multiple heterogeneous base classifiers (see Table 1 for details
on the base learners employed) are trained on different data chunks,
similarly to our approach. An optimal combiner function (specifically,
a GP-tree model assembling non-trainable aggregation functions) is
computed, for fusing the base classifiers predictions, though a Genetic
Programming procedure, which adopts a fitness measure defined in
terms of the accuracy scores that a candidate solution achieves over
the classes. Notably, these per-class accuracy scores are weighted dif-
ferently in order to deal effectively with imbalanced classes (cf. issue
I3, in Section 2.2) –as confirmed by experimental results obtained
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on dataset ISCX IDS. An extended version of this work is presented
in [17], which devises a continuous learning-and-classify method. As
highlighted in Table 1, the use of a temporal segmentation strategy
for dividing the training data among different base models, allows this
approach possibly to deal with non-stationary data/class distributions.
However, it is worth noticing that, when applied to a test instance 𝑥,
he GP-tree meta-classifier discovered in [17] returns a classification
ecision that only depends on the predictions made for 𝑥 by the
ase classifiers, without taking account of the intrinsic features of 𝑥
tself. This does not allow the approach possibly to learn instance-
daptive combination functions, which may become very useful when
sing specialized/local base classifiers, which are very likely to occur
hen using temporally-segmented chunks of NIDS data (cf. issue I4, in
ection 2.2).

.2. Ensembles of DNN models for IDS

An emerging research line consists in leveraging Deep Learning
DL) architectures for intrusion detection. Basically, a Deep Neural
etwork (DNN) works in a hierarchical way: several layers of non-

inear processing units are stacked one onto the other, so that each layer
n the model generates features at a higher level of abstraction than
he previous layer. Compared to classic ML techniques, these models
njoy several benefits [20], two of which look particularly interesting
or the analysis of network traffic: (i) they can learn from raw traffic
ata with little/no manual feature engineering; (ii) they can be trained
ncrementally, by periodically using new batches of training data to
pdate their weights [21].

Quite a complete and updated survey on existing DL-based ap-
roaches to IDSs can be found in [31]. In the rest of this section,
e concentrate on those leveraging some kind of model ensemble/

ombination strategy, which look more closely related to the problem
etting and proposal described in this manuscript.

A summary of the selected works is reported in Table 2, sharing the
ame structure as Table 1, which reports, for each approach, the kinds
f DNN models and combination strategy employed, the dataset(s) and
etrics used to validate the approach, and information on the features

elated to the issues I1, I2 and I3 of Section 2.2.
As concerns the kinds of base models exploited, it seems that the

ollowing neural architectures have been used the most in these IDS
ethods, in addition to feed-forward (FF) deep neural networks (simply

eferred to, in the table, as DNNs): Deep Belief Networks (DBN), Auto-
ncoders (AEs), and Long Short Term Memory (LSTM) networks [32]
nd Extreme Learning Machines [33].

Three broad categories of combination strategies seem to have been
sed in the DNN-ensemble solutions that have been proposed in the
ield of IDS so far:

A. Cascade training/classification (used in [22,23,34]);
B. Knowledge transfer and fine tuning (used in [24–27]); and
C. Predictions Fusion, i.e. the standard approach to ensemble learn-

ing (used in [28–30]).

. cascade-like approaches. The first category includes methods that
xploit an unsupervised (or a self-supervised) neural model (typically
DBN or an AE) as a sort of feature extractor/learner, and train a

hallow classification model by reusing some classic machine learning
lgorithm.

A pioneering approach of this kind in the field of IDSs is described
n [22], which combines a DBN and an SVM, according to such a
ybrid machine/deep learning scheme. The DBN is specifically meant
o perform a dimensionality reduction task — which is empirically
hown in the paper to improve classic PCA, gain ratio and chi-square
ethods — and eventually provide the SVM induction algorithm with

ffective (more general and meaningful) representations of the training
53

ata at hand. The SVM classifier discovered from the data transformed
his way is expected, indeed, to obtain an SVM model capable to classify
ew data instances (once mapped onto the transformed space produced
y DBN).

A conceptually similar hybrid approach to NIDSs is shown in [34],
ith a deep AE and a Random Forest (RF) classifier (in the places of the
BN and SVM classifier, respectively). More specifically, the deep AE

akes the form of a stack of non symmetric deep AEs (i.e. auto-encoders
eaturing multiple non-symmetrical hidden layers), and it is still trained
n an unsupervised way in order to capture useful (and general) data
ransformations. The representations of the training instances produced
y this model (more precisely, by its final encoding layer) are then used
along with their associated class labels) to induce the RF component.

Mohammadi et al. [23] adopt a rather similar hybrid solution, by
pecifically using a stacked AE (featuring four hidden layers for both
he encoder and decoder) to perform the representation learning (and
imensionality reduction) task. The transformed data are then passed
o a Linear Classifier (LC), trained with an ad hoc Genetic Programming
precisely Memetic) algorithm.

. transfer-and-finetune approaches. The proposals falling into this cat-
gory still rely on exploiting an unsupervised NN model for learning
ow-dimensional and general enough data representations. However,
he knowledge acquired by such an auxiliary model (typically an AE
r DBN) is directly transferred into a DNN classifier, before fine tuning
he latter, in a supervised way, over the labeled training instances
vailable.

In particular, in [26], the auxiliary unsupervised learning task is
elegated to a deep AE model, which consists of four stacked auto-
ncoders. The main classification task is performed instead with a DNN
odel, which includes a replica of the encoding structure of the deep
E model, topped with a softmax regression layer. Once trained, the
NN classifier can be directly applied to the original features of any
ew data instance 𝑥, in order to predict the vector of class membership
robabilities for 𝑥.

Very similar architectures (a deep AE and a DNN with a number
f shared layers) and training/classification schemes are used in [25]
which specifically adopts a 2-layer AE) and in [27], in order to detect
etwork intrusions.

By contrast, a DBN and a paired DNN (including a final softmax
ayer) is employed in [24]. The former model (consisting of four
estricted Boltzmann Machines [32]) still plays as a feature learning
and dimensionality reduction) component, trained in an unsupervised
ay. The hidden weights of the DBN are used to initialize (pretrain)

he DNN, which is fine-tuned in two steps (first only in its final
lassification layer, and then as a whole).

. predictions fusion approaches. As highlighted in [35], although
promising, DNN ensemble architectures have been under-exploited in
the literature.

In [28] the output of several DNN approaches are combined to
detect anomalous behavior occurring in computer networks. The final
heterogeneous ensemble includes different kinds of base models: an AE-
based DBN-based classifier (built according to a transfer-and-finetune
strategy like those presented previously), a DNN classifier and an
ELM classifier. An extensive experimentation proves that employing an
ensemble-based strategy permits higher intrusion detection accuracy to
be achieved than single-DNN classifiers.

A hybrid (shallow+deep) ensemble is proposed in [29], which
includes a DNN and traditional ML models — namely, Decision Tree
(DT), SVM classifier, Logistic Regression (LogR) and k-NN classifiers.
An ad hoc algorithm (based on CART), named MultiTree, is proposed in
the work as an additional base learner, which exploits data resampling
mechanisms (helping cope with imbalanced classes) and eventually
returns a DT classifier. An adaptive weighted voting scheme is used
to derive an overall classification, for any new data instance, from the

predictions made for the instance by these base models.
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Table 2
Ensembles of DNN models for IDS: main properties and mechanisms adopted to cope with the issues defined in Section 2.2. For the sake of comparison, the same kinds of
information are also reported for our approach.

Approach Combined models Combined strategy Dataset(s) Evaluation
metric(s)

Pre-processing Changing &
recurring behaviors
(I1)

Scarcity of labeled data (I2) Class
imbalance
(I3)

Salama
et al. [22]

DBN + SVM
classifier

Cascade
training/classification
(DBN used as feature
extractor)

NSL-KDD ACC Dimensionality
reduction via
DBNs

Not addressed
explicitly and in
fulla

Not addressed explicitly and
in fullb

Not
addressed

Shone et al.
[1]

Deep AE +
Random Forest
(RF) classifier

Cascade
training/classification
(AE used as feature
extractor)

KDD’99,
NSL-KDD

ACC, P, R,
F1, FAR

Standard
preprocessing

Not addressed
explicitly and in
fulla

Not addressed explicitly and
in fullb

Not
addressed

Moham-
madi and
Namad-
chian
[23]

Deep AE-based
anomaly predictor
+ a Linear
Classifier (LC)

Cascade
training/classification:
AE’s predictions are
taken as input by the LC

KDD’99,
NSL-KDD

ACC Dimensionality
reduction via
stacked AE

Not addressed
explicitly and in
fulla

Not addressed explicitly and
in fullb

Not
addressed

Al-
rawashdeh
and Purdy
[24]

DBN + DNN
classifier
(replicating the
DBN’s structure)

Knowledge transfer
(DBN to DNN) and fine
tuning

KDD’99 ACC, TP,
TN, FP, FN

Standard
preprocessing

Not addressed
explicitly and in
fulla

Not addressed explicitly and
in fullb

Not
addressed

Potluri and
Diedrich
[25]

Deep AE + DNN
classifier
(replicating the
AE’s encoder part)

Knowledge transfer (AE
to DNN) and fine tuning

NLS-KDD ACC Standard
preprocessing

Not addressed
explicitly and in
fulla

Not addressed explicitly and
in fullb

Not
addressed

Farah-
nakian and
Heikkonen
[26]

Deep AE + DNN
classifier
(replicating the
AE’s encoder part)

Knowledge transfer (AE
to DNN) and fine tuning

KDD’99 ACC, DR,
FAR

Dimensionality
reduction via
AE

Not addressed
explicitly and in
fulla

Not addressed explicitly and
in fullb

Not
addressed

Javaid
et al. [27]

Deep AE + DNN
classifier
(replicating the
AE’s encoder part)

Knowledge transfer (AE
to DNN) and fine tuning

NSL-KDD ACC, P, R,
F1

Standard
preprocessing

Not addressed
explicitly and in
fulla

Not addressed explicitly and
in fullb

Not
addressed

Ludwig
[28]

AE-based,
DBN-based, DNN
and ELM
classifiers

Predictions Fusion via
(weighted) majority
voting

NSL-KDD ACC, DR,
FAR, AUC,
F1

Dimensionality
reduction via
AE; Feature
extraction via
DBN

Not addressed
explicitly and in
fulla

Not addressed explicitly and
in fullb

Not
addressed

Gao [29] DT, RF, kNN, DNN
and ‘‘MultiTree’’
classifiers

Predictions Fusion via
(class-wise) weighted
majority voting

NSL-KDD ACC, P, R,
F1

Dimensionality
reduction via
PCA

Not addressed Not addressed Data
resampling
(only when
learning the
MultiTree
model)

Zhong
et al. [30]

DBN + AE-based
anomaly predictor
+ LSTM anomaly
predictor

Hybrid: Cascade training
+ Predictions Fusion via
a trainable weighted
averaging

MAWILab,
CICIDS
2017

P, R, F1,
FPR

Damped
Incremental
Statistics for
feature
extraction

Ensemble retrained
periodically;
however, only
instances from last
chunk are
maintained

Partially addressed, labeled
data used only to compute
combination weights

Not
addressed

Our
approach

Multiple DNNs
trained on
temporal data
chunks

Predictions fusion via a
trainable (MOE or FF)
sub-net or
max-probability rule

CICIDS
2017,
ISCX IDS

AUC,
AUC-PR, F1

Standard
preprocessing

Temporal ensemble
(base models
trained on different
data chunks)

Dropout layers and
skip-through connections
within each base model
(providing additional
ensemble-like capabilities)

Data
resampling,
imbalance-
aware loss
function

aIn principle, the models could be trained incrementally, but knowledge of past attack types may be lost.
bIn principle, additional unlabeled data could be exploited in the unsupervised feature-learning step, to reduce overfitting risks, but such a semi-supervised learning scheme is not
explored in the work.
Unsupervised DBN and AE models are combined with an LSTM
predictor in the HELAD (Heterogeneous Ensemble Learning Anomaly De-
tection) NIDS system proposed in [30]. First, a DBN ‘‘feature extractor’’
and the AE are trained on the given network data, regarded each
as a sequence of packet tuples. The LSTM model is then trained in
a supervised way, after labeling each packet tuple with the (RMSE-
based) anomaly score predicted by AE. A new instance 𝑥 is classified
as either anomalous or normal by comparing a fixed threshold with a
weighted combination of the anomaly scores assigned to 𝑥 by the AE
and LSTM (so playing as two base models). Notably, the combination
54

weights are learnt via a (‘‘supervised’’) simulated annealing procedure,
guided by manually labeled examples — this makes the approach fall
in the realm of (semi-) supervised IDS solutions. The ensemble model is
retrained periodically according to a fixed-window policy, where both
manually labeled examples and automatically labeled ones (coming
from the previous data window) are exploited to update the predictors
combination weights. More details in this respect are provided in the
following paragraph, which discusses some limitations of current DL-
based approaches to IDS, relatively to the challenging issues I1, I2 and
I3 (cf. Section 2.2).
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3.3. Gap analysis

As summarized in Table 2, none of the approaches deals with the
problem of learning from imbalanced data (issue I3), apart the one
proposed in [29] –which just resorts to the use of a data resampling
procedure, prior to training one of the base classifiers.

Moreover, the need of coping with changing/recurring behaviors
(issue I1) and with the scarcity of labeled data (issue I2) is not solved
explicitly and properly in the reviewed works. Indeed, as for issue I1, it
is worth noticing that, in principle, all the NNs used in these approaches
could be trained incrementally, by periodically exploiting novel batches
of training data to update the weights of these NNs [21]. In other words
the approaches falling in categories B and C can be easily turned into
incremental learning ones, and the same might even be done with the
approaches of category A —provided that an incremental algorithm is
used to induce the shallow classifier (maybe in an approximated way).

However, performing online classification with incrementally
trained NNs requires special attention in many non-stationary settings,
seeing as common back-propagation algorithms (such as SGD and vari-
ations of it) were originally conceived to work on i.i.d. data instances
(i.e. instances sampled uniformly from a given fixed distribution). In
particular, as observed in [36], these algorithms tend to reinforce
the data modalities (e.g., attack sub-types, in our setting) covered
by the current batch, so that the NN is likely to forget those that
are not (maybe temporarily) well represented in the last batch (or
the last few batches). This phenomenon, known in the literature as
catastrophic forgetting and well studied in Continual/Lifelong Learning
ystems [11]), exacerbates in IDS settings, where different attack sub-
ypes tend to appear and disappear over time, as well as come back
maybe in a disguised/renewed form) after a relatively long period of
bsence. This difficulty to retain naturally relevant knowledge on past
ttack modes may explain the fact that almost none of the reviewed
L-based approaches to IDS have been conceived to work on streaming
ata.

The above observations provide a possible explanation to the fact
hat all the state-of-the-art DNN ensembles for IDS did not addressed
xplicitly issue I1, despite it being definitely crucial in real IDS scenar-
os. As discussed before, the only exception to this general pattern is
he HELAD system [30], owing to its capability to periodically retrain
he ensemble detector (or, at least, the combiner module of it), over
ew data chunks according to a variant of classical landmark windowing
ethods [37], which also exploits older labeled data, coming from the
revious chunk and from the initial set of examples provided by the
xpert. However, we are afraid that this expedient does prevent losing
elevant knowledge on behaviors that featured some chunks before,
eeing as the underlying base models may well forget this knowledge
n a few retraining steps.

Issue I2 as well is not addressed appropriately in the approaches of
able 2. And yet, the ones relying on a feature-learning step (i.e. the
pproaches of categories A and B) could be easily rephrased in a
emi-supervised fashion, as to exploit larger amounts of unlabeled
ata (in this preliminary unsupervised step), when only few labeled
ata are available for the supervised training phase. Anyway, none of
hese approaches explores this possibility, nor other mechanisms for
itigating overfitting risks in the latter phase. We suppose that issue

2 should not impact severely on the HELAD method [30], since this
ethod only requires labeled data to find optimal combination weights

or its base anomaly predictors, while training these on either unlabeled
ata (the AE-based one) or artificially labeled data (the LSTM-based
ne). However, we cannot draw a definite conclusion in this respect,
or no analysis of the sensitiveness of the method toward the scarcity
f labeled data is conducted in [30].

As summarized in both Tables 1 and 2, the framework proposed
n this paper is meant to address all of these issues, while also in-
55

ludes a number of ad hoc schemes for fusing the predictions of c
local/specialized classifiers (which is a specific issue of chunk-based en-
sembles like ours). In fact, the following technical aspects of the frame-
work (devised rightly to cope with these issues) make it quite different
from existing solutions in the field: the chunk-wise ensemble learning
scheme used in the training of an IDS model, the peculiar DNN architec-
ture (including both residual-like and dropout components) employed
for the base classifiers, in addition to the above-mentioned combination
schemes (in the place of usual averaging/voting mechanisms).

Details on these features are provided in the next section, while fur-
ther remarks on the novelty of our proposal can be found in Section 7.2.

4. Proposed framework: ensemble learning scheme and design
choices

The fundamental research question underlying our work can be
summarized as follows: is it possible to devise suitable DNN archi-
tectures for implementing the learning infrastructure of a chunk-wise
ensemble classification approach, in a way that the challenging issues
stated in the previous subsection are addressed satisfactorily?

Armed with the desire to shed some light on this question, we
here propose an ensemble-based framework for the binary classification
problem above, where both the base classifiers and the combination
logics rely on specific neural-network architectures defined here ad hoc.

Before illustrating the proposed DNN architecture in detail in a
separate section (namely, Section 5), in what follows we first illustrate
(in Section 4.1) a chunk-wise ensemble learning scheme for which
our proposed framework is meant to provide a core methodological
background, and then summarize (in Section 4.2) the main techni-
cal features of our framework that allow it deal appropriately with
challenging issues presented in Section 2.2.

4.1. Chunk-wise ensemble learning scheme

As sketched in Fig. 1, our approach to the detection of network
intrusions relies on building up a series of base DNN classifiers (denoted
as 𝐵𝑀1, 𝐵𝑀2,…) sharing the same DNN architecture (see Section 5).
These classifiers are induced from disjoint data chunks (denoted as
𝐷1, 𝐷2,…, respectively), which result from suitably partitioning the
given training instances.

Different strategies have been proposed in the literature (see, e.g.,
[7]) for deriving the data chunks from temporally-marked data orig-
inated by a data stream. A very simple strategy, used to implement
and test our approach, consists in applying a sliding window of a
fixed temporal span (clearly, one may well define the window in terms
of instances’ number), and then discarding the segments that do not
contain a sufficient number of examples of the attack class. This way,
as depicted in the figure, the data chunks 𝐷1, 𝐷2,… are the result
of first segmenting the stream of network-connection instances, and
then filtering out those that are not useful for training a discriminative
model.

Clearly, to ensure that the base classifiers are sufficiently reliable
and diverse from one another, the size of the sliding window should
be devised in a way that: (i) an adequate number of labeled instances
can be extracted from all the chunks, and (ii) the resulting chunks are
likely to feature different data distributions.3

The discovery of the ensemble follows a supervised learning strategy
where the labeled connection instances are used as example data to

3 For the sake of greater diversity, one could employ statistical change-
etection tests to filter out redundant chunks and/or identify the chunks’
orders more effectively; however, studying the combination of our learning
pproach with such an advanced feature is beyond the scope of this work,
nd it is left for future investigation. Anyway, it is worth noticing that fixed-
indow chunking approaches have been proven effective in dealing with
oncept drifts on their own, without using change-detection mechanisms [6,7].
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induce the base classifiers and possibly a combiner sub-model for
merging the outputs of the base classifiers into a final prediction.

Specifically, as shown in Algorithm 1, the labeled data, gathered
in each data chunk 𝐷𝑖, are split in a (random) stratified fashion into
wo subsets, named respectively 𝐷𝐵

𝑖 and 𝐷𝐸
𝑖 . Therefore, each resulting

ataset will include both positive and negative instances, i.e. attack and
ormal traffic flows, with the same relative frequency. Data sample 𝐷𝐸

𝑖
s a fraction comb_train_perc of 𝐷𝑖, which is kept aside for eventually
raining the combiner (line 11 of Algorithm 1) — notice that, in the
ase the user wants to adopt a non-trainable combination scheme,
omb_train_perc should be set to 0. 𝐷𝐵

𝑖 , containing the remaining in-
tances, is used instead to train the base classifier 𝐵𝑀𝑖 associated with
he data chunk 𝐷𝑖.

Algorithm 1: Pseudo-code of the chunk-wise ensemble learning
scheme
1 function 𝐵𝑢𝑖𝑙𝑑𝐸𝑀 (𝐷, 𝑘, 𝑠,comb_train_perc)
Input : A list of 𝑘 labeled data chunks 𝐷 =[𝐷1, 𝐷2,… , 𝐷𝑘]

temporally sampled from a datastream D ;
A combination strategy 𝑠;
The percentage of tuples comb_train_perc drawn for

learning the combiner sub-net.
Output: Ensemble Model 𝐸𝑀

2 𝐷𝐸 = [] // samples drawn from each data chunk 𝐷𝑖
3 𝐵𝑀 = [] // list of base models
4 foreach 𝐷𝑖 ∈ 𝐷 do
5 Randomly split 𝐷𝑖 in a stratified fashion into two disjoint

subsets 𝐷𝐸
𝑖 and 𝐷𝐵

𝑖 according to the comb_train_perc value

6 𝐷𝐸 +
← 𝐷𝐸

𝑖 // append the current data sample to 𝐷𝐸

7 𝐵𝑀𝑖 = InduceNN(𝐷𝐵
𝑖 ) // induce a DNN from 𝐷𝐵

𝑖 (see
Section 5.1)

8 𝐵𝑀
+
← 𝐵𝑀𝑖 // append the current model to the list of base

models
9 end
10 𝐶𝑀 = InitCombiner(𝑠) // initialize a combiner sub-net (see

Section 5.2)
11 𝐸𝑀 = BuildEnsemble(𝐷𝐸 , 𝐵𝑀 , 𝐶𝑀) // assembly and finalize the

ensemble model, possibly training the combiner sub-net on 𝐷𝐸

12 return 𝐸𝑀

In order to really apply such a computation scheme to streaming
ata, according to a continuous learning perspective, one should de-
ide: (i) in which moments a novel version of the ensemble model must
e built; (ii) which of the discovered base models must be included in
he ensemble. In this work, we assume that, as soon as a novel base
lassifier 𝐵𝑀𝑖 is built, the ensemble is updated to contain the latest

classifiers 𝐵𝑀(𝑖−𝑘+1),… , 𝐵𝑀𝑖 as its base models, and a combiner
ossibly trained on 𝐷𝐸

(𝑖−𝑘+1)∪⋯∪𝐷𝐸
𝑖 . The assumption underlying such a

hoice is that 𝑘 is large enough to allow the ensemble to keep memory
f all relevant attack patterns — i.e., so that older data chunks (for
hich there is no corresponding base classifier in the ensemble) either

epresent obsolete attack patterns or concern regions of the instances
pace that are also covered by the selected data chunks. Should it not be
he case, one could think of resorting to other model selection strategies
see [3,37] for a survey). The discovered ensemble can be used to
lassify unlabeled data instances, possibly in an online fashion, until
novel updated ensemble becomes available.

The above learning scheme was partly simulated in the experimen-
ation described in Section 6, where we evaluated the performances
f different ensemble models induced from only 𝑘 = 7 data chunks
resulting from segmenting by using non-overlapping windows with the
ame temporal span of one day).

It is worth noticing, however, that implementing the above de-
cribed online stream-processing scheme in full is beyond the scope of
56

o

this work. The classification framework proposed in this work is meant,
indeed, to only offer a methodological basis for assessing the feasibility
and validity of our idea of extending a chunk-wise ensemble learning
approach with deep learning capabilities. And, in fact, experiments
conducted with a prototype implementation of the proposed framework
allowed us to give a positive empirical answer to the fundamental
research question that originated our work, as discussed in Section 6.

4.2. Design choices: how the framework is meant to deal with issues I1 –I4

Let us now discuss the ad-hoc technical solutions that we propose to
embed in the incremental intrusion-oriented classification framework
introduced above, in order to empower it with the capability to address
the challenging issues mentioned in Section 2.2. Notice that the link
between these technical features and the general issues I1, I2 and I3 is
also summarized in Tables 1 and 2 which allow for quickly comparing
our approach to the existing ones, as far as the ability to cope with
these issues is concerned.

How issue I1 (non-stationary data) is addressed. Based on previous
research studies [7], we naturally expect that the adoption of the
chunk-wise learning scheme described above herein should allow our
framework to effectively cope with the skewed non-stationary nature
of NIDS data, and prevent the risk of catastrophic forgetting that
affects deep-learning models (and also many kinds of shallow one)
when trained incrementally. In fact, compared to recent DL extensions
for mitigating such a forgetting phenomenon [11], chunk-based en-
sembles appears to be a more consolidated solution, offering a very
good balance along the stability–plasticity spectrum, owing to their
ability to both: (i) integrate novel information by simply adding new
base classifiers to the ensemble; and (ii) forget obsolete knowledge,
by removing/underweighting the corresponding old classifier(s) [7].
This feature of chunk-based ensembles proves particularly useful in
IDS environments, where concept drifts often concern only some parts
of the knowledge discovered (e.g., linked to emerging modalities of
intrusion attack or of normal behavior), while leaving the others parts
of this knowledge (e.g., concerning ever-recurring attack/normality
modalities) still relevant.

Interestingly, the advantage of using this category of ensemble-
based learning systems also has some theoretical grounding, seeing
as these systems have been proven to provide more stable results
than single-classifier approaches in non-stationary settings [38,39],
independently of the base learner adopted.

How issue I2 (example scarcity) is addressed. Dividing network
-connection instances into temporal chunks exacerbates the risk of
having insufficient training data for inducing deep base classifiers, since
only a small fraction of these instances can be reasonably assumed to
be equipped with a ground-truth class —despite combining multiple
(diverse-enough) weak classifiers into an ensemble being an effective
way to improve their individual performance, provided that all of them
are better than a random classifier.

Thus, in order to prevent the discovery of low-quality per-chunk
classifiers, we devise an ad-hoc DNN architecture for these classifiers
that features a synergistic combination of skip (a.k.a. shortcut) con-
nections and of dropout capabilities. Skip connections allow the base
DNN classifier to play similarly to Residual Networks [40], which have
been proven really robust to the notorious degradation problem (neural
etworks performing worse when increasing their depth), and capable
f ensuring a good trade-off between convergence rapidity and expres-
ivity/accuracy. It is worth noting that these benefits seem to be linked
o the fact that a residual network plays as an ensemble of alternative
ransformation paths (as shown in Fig. 2), where most contributions
o the final result (and to the gradient) come from medium-length
aths, which are just a tiny portion of the total (combinatorial) number
f such paths. Thus, no matter whether the network contains long
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Fig. 2. Ensemble-like interpretation of a residual network (courtesy of [41]): conventional 3-block residual network (left) and its unraveled view (right).
transformation paths (which would be hard to train, owing to vanish-
ing gradients), these ‘‘effective’’ paths can be trained effectively (and
quickly enough).

In addition, each base DNN classifier is equipped with dropout
layers [42], each of which is meant to mitigate the risk of overfitting
by basically forcing the neurons following the dropout layer to depend
less on those that precede the layer itself. Interestingly, as noticed
in [42], dropout mechanisms make a neural net behave as an ensemble
of multiple sub-nets resulting each from randomly masking some of its
neurons.

Therefore, in a sense, our approach benefits from different levels of
model ensembling: (i) it discovers separately and then combines multi-
ple base classifiers, by training the same DNN architecture over disjoint
training samples (resulting from an explicit ‘‘horizontal partitioning’’
of the training instances into data chunks); (ii) each base classifier is a
neural network that works as an (implicit) ensemble of sub-nets, owing
to the presence of both skip connections and of dropout layers.

A detailed description of the architecture proposed for the base
classifiers is provided in Section 5.1.

How issue I3 (class imbalance) is addressed. The use of classic
classification-oriented loss functions (such as the popular MSE and
binary cross-entropy [43] functions), in the training of our DNN-based
base classifiers and combiners, may well lead to models biased towards
the majority class of normal connections. In order to prevent this, we
adopt a simple (but effective enough, as shown in our experimenta-
tion) cost-sensitive loss function 𝐿(𝑐𝑓𝑛 ,𝑐𝑓𝑝), which is defined as follows,
parametrically to the costs of false positives (𝑐𝑓𝑝) and of false-negative
(𝑐𝑓𝑛):

𝐿(𝑐𝑓𝑛 ,𝑐𝑓𝑝) = 1
|𝑇 |

∑

𝑥∈𝑇
|𝑦𝑥 − �̃�𝑥| ⋅𝑤𝑒𝑖𝑔ℎ𝑡(�̃�𝑥, 𝑦𝑥, 𝑐𝑓𝑛, 𝑐𝑓𝑝) (1)

where, for any training instance 𝑥 in some given training/validation
set 𝑇 , 𝑦𝑥 is the actual anomaly indicator of 𝑥 (i.e. a Boolean-like flag in
{0, 1} such that 𝑦𝑥 = 1 iff 𝑥 is an instance of an attack class); �̃�𝑥 ∈ [0, 1] is
the anomaly score predicted for 𝑥; and 𝑤𝑒𝑖𝑔ℎ𝑡(�̃�𝑥, 𝑦𝑥, 𝑐𝑓𝑛, 𝑐𝑓𝑝) is an aux-
iliary error weighting function defined as follows: (i) 𝑤𝑒𝑖𝑔ℎ𝑡(�̃�𝑥, 𝑦𝑥, 𝑐𝑓𝑛,
𝑐𝑓𝑝) = 𝑐𝑓𝑛 iff 𝑥 is a false negative (i.e. 𝑦𝑥 = 1 and �̃�𝑥 ≤ 0.5); (ii)
𝑤𝑒𝑖𝑔ℎ𝑡(�̃�𝑥, 𝑦𝑥, 𝑐𝑓𝑛, 𝑐𝑓𝑝) = 𝑐𝑓𝑝 iff 𝑥 is a false positive (i.e. 𝑦𝑥 = 0 and
�̃�𝑥 > 0.5); and (iii) 𝑤𝑒𝑖𝑔ℎ𝑡(�̃�𝑥, 𝑦𝑥, 𝑐𝑓𝑛, 𝑐𝑓𝑝) = 1 otherwise.

How issue I4 (combining specialized classifiers) is addressed. To possibly
of finding a ‘‘data-adaptive’’ mechanism for combining the base classi-
fiers, we devise three alternative trainable neural-network architectures
(described in detail in Section 5.2) for implementing the combiner of
the ensemble: two of these architectures compute the final prediction
for an instance 𝑥 by suitably fusing results (namely the final predictions
and the topmost hidden representations, respectively) returned for 𝑥 by
the base classifiers, while also taking as input the original features of 𝑥
(in order possibly to adapt the combination logics to the region of the
instance space to which 𝑥 belongs).

A further ‘‘data-adaptive’’ combiner architecture introduced in our
framework, inspired to Mixture-of-Experts models [8], is meant to
return, for any data instance 𝑥, a weighted average of the attack
probabilities predicted for 𝑥 by the base classifiers, where the classifiers
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weights are computed through a trainable sub-net that still takes 𝑥 itself
as input.

These three different kinds of trainable combiners can give the
ensemble the ability to consider the regions of competence of the base
classifiers, differently from usual combination schemes like (weighted)
majority voting and prediction averaging.

In addition to these combiners, a simpler non-trainable combiner is
considered, which returns the most confident prediction among those
of the base classifiers. Even though this method is not fully capable of
capturing the reliability regions of the base classifiers, empirically we
found it more robust to issue I4 than traditional global combination
schemes like (weighted) averaging/voting.

5. Proposed framework: DNN architectures devised for our ensem-
ble

In our approach, an ensemble classifier can be regarded as an overall
neural network that integrates two kinds of components: a number
of base classifiers sharing the same architecture (but extracted from
different data chunks), and a combiner sub-net for deriving an overall
prediction from the outputs of the base classifiers. The source code
of this framework, used to run the experimental results shown in
Section 6, is available at: https://github.com/massimo-guarascio/dnn_
ensemble_ids.

The rest of this section illustrates the DNN architectures that we
devised for the base models (Section 5.1) and for the combiner sub-net
(Section 5.2).

5.1. Base models’ architecture (b-DNN)

As mentioned above, in our ensemble learning approach, the base
intrusion–detection models share the same (feed-forward) DNN ar-
chitecture, which is illustrated in pictorial form in Fig. 3(a). The
architecture consists of a stack of the following different kinds of
sub-nets (appearing in the figure from left to right, respectively):

• an input layer that is just devoted to representing the log data in
a numerical vectoral form;

• a feature-engineering block, composed of two layers staked one
onto the other: the former layer, named Extended Input layer, is
in charge of enriching each input vector with a fixed number
of additional features, which are computed each by applying a
distinguished non-linear functions to each original feature 𝑥 in
the vector; any extended data vector is then made to pass through
an Embedding layer, which encodes a (trainable) transformation
producing a compressed representation of the data vector;

• a variable number 𝑚 > 1 of instantiations of a Residual Block sub-
net (denoted in the figure as RB1, …, RB𝑚), which is meant to
produce a ‘‘versatile’’ hierarchy of abstract data features, useful
for recognizing the targeted intrusion attacks accurately; essen-
tially, each of these blocks consists of two instantiations of a
Building-block sub-net, hinging on a fully-connected layer, linked
one the other by a skip connection (more details are given later
on);

https://github.com/massimo-guarascio/dnn_ensemble_ids
https://github.com/massimo-guarascio/dnn_ensemble_ids
https://github.com/massimo-guarascio/dnn_ensemble_ids
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• a final Decision Layer, equipped with a sigmoid activation func-
tion [43], which maps any given data instance 𝑥 = ⟨𝑥1,… , 𝑥𝑁 ⟩ to
an anomaly score �̃�, representing an estimate of the probability
that 𝑥 is an attack.

More details on the internal structures of the Building Block and
esidual Block sub-nets are illustrated in what follows.

uilding block. The architecture of this sub-network, depicted in
ig. 3(c), is composed by three components: (i) a Dense (i.e. fully-
onnected) layer, all the units of which are equipped with a tanh
ctivation function [43]; (ii) a batch-normalization [44] layer, which
s meant to improve the performances and stability of the dense layer
n the block; and (iii) a dropout [42] layer, which helps strengthen the
lassifier robustness to overfitting.

esidual block. As illustrated in Fig. 3(b), in each Residual Block two
eplicas of the above-described building block are piled up one onto the
ther, and linked through a skip/shortcut connection. This connection
llows the entire network to behave as a Residual Network [40] and
each a good trade-off between convergence rapidity and expressivity,
s discussed in Section 4. To further reduce the risk of abstracting
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oo much over the data features and thus losing the fine-grain ones t
hat may possibly help directly in detecting intrusion attacks, the
utput of either building block’s instance (inside each residual block)
s concatenated with the output of the Feature Engineering block. The
irect use of this low-level data as an additional input for the residual
locks is emphasized in Fig. 3(a) as an additional information flow,
abeled as Embedded Input propagation.

.2. Combiner sub-net: four alternative neural-network architectures

Choosing the method for fusing the base models into a collective
ecision is a key task in the design of a classification ensemble in
eneral. As discussed previously, in our specific setting, this design
hoice is made even more critical by the fact that the base classifiers
re trained on disjoint chunks of the training data that are likely
o cover different regions of the data-instance distribution. This led
s to discard traditional methods like majority voting and prediction
veraging that have been used in the previous literature of IDS-oriented
NN ensembles, seeing as, in our setting, a novel test instance can

eceive unreliable predictions from the base classifiers that refer to
nrelated regions of the instance space.

Before explaining the proposed combination schemes, let us notice

hat, in our approach, any ensemble classifier is conceived as an overall
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neural network that integrates two kinds of components: (i) 𝑘 base
classifiers, denoted as 𝐵𝑀1, 𝐵𝑀2, … , 𝐵𝑀𝑘 (sharing all the architecture
b-DNN shown in Section 5.1) extracted from different data chunks, and
(ii) a combiner sub-net 𝐶𝑀 , which is in charge of fusing the different
classification skills of the base classifiers.

Four alternative neural-network architectures are proposed here
for the combiner 𝐶𝑀 : a simple non-trainable architecture, named
ensemble_max, which simply returns the class predicted with the highest
probability, and three trainable architectures, named ensemble_stack,
ensemble_feature and ensemble_moe that are meant to learn automatically
a sort of ‘‘context-aware’’ function that fuses the outputs of the base
classifiers according to the characteristics of the data instance 𝑥 at hand
(taken as an explicit direct input of the combiner itself).

Before illustrating these architectures in more detail, let us in-
troduce a small notation. Let 𝐹𝐸 denote a (trainable) Feature Engi-
neering block, as those defined in Section 5.1, and 𝑀𝐿𝑃 𝑞 denote a
probabilistic-classification block consisting of a one-layer dense (feed-
forward) network returning a 𝑞-dimensional vector as output, topped
by a (softmax, or sigmoid in the case 𝑞 = 1) normalization layer that
transforms the components of this vector in a way that they sum up to
1 (so as to represent a sort of discrete probability distribution). Let us
also regard all these neural blocks as functions — e.g., for any given
data instance 𝑥, the expanded representation of 𝑥 produced by a block
𝐹𝐸 is indicated as 𝐹𝐸(𝑥).

For any given data instance 𝑥, let �̃�(𝑖) be the final output (i.e. the
anomaly score) returned for 𝑥 by 𝐵𝑀𝑖, and 𝑓 (𝑖) be the most abstract
vectoral representation of 𝑥 produced by 𝐵𝑀𝑖 (and used as input to
the topmost layer of the latter to compute its final prediction), actually
denoted as 𝑓𝑚 in the schema of the reference b-DNN architecture of
Fig. 3(a) —to be more precise, 𝑓 (𝑖) is the output returned by the second
building block in the last residual block of 𝐵𝑀𝑖, when providing the
latter with 𝑥 as input.

The behavior of the different combiner architectures considered in
our framework can be then defined as follows:

• The ensemble_max (non-trainable) combiner architecture simply
encodes a function that selects the highest class-membership
probability among those estimated, for any test instance 𝑥, by
the base classifiers — essentially, this combiner returns the most
confident prediction as the final decision of the ensemble. More
precisely, the prediction returned for 𝑥 by this architecture is
computed as follows: (i) 𝑝𝑎𝑡𝑘𝑚𝑎𝑥(𝑥) if 𝑝𝑎𝑡𝑘𝑚𝑎𝑥(𝑥) > 𝑝𝑛𝑜𝑟𝑚𝑚𝑎𝑥 (𝑥), or (ii)
1 − 𝑝𝑛𝑜𝑟𝑚𝑚𝑎𝑥 (𝑥) otherwise, where 𝑝𝑛𝑜𝑟𝑚𝑚𝑎𝑥 (𝑥) = max𝑖∈{𝑖,…,𝑛}(1 − �̃�(𝑖)) and
𝑝𝑎𝑡𝑘𝑚𝑎𝑥(𝑥) = max𝑖∈{𝑖,…,𝑛} �̃�(𝑖) represent the highest scores assigned
(from all the base classifiers) to the probabilities that 𝑥 belongs
to the classes of normal instances and attacks, respectively.

• The ensemble_stack combiner architecture implements a variant
of a classical stacked-generalization [45] scheme, which takes
as input the ‘‘feature-engineered’’ version of 𝑥 itself (obtained
with a suitable 𝐹𝐸 block) in addition to the predictions �̃�𝑖 re-
turned for 𝑥 by the base classifiers. Both kinds of information are
given as input to a simple 𝑀𝐿𝑃 1 meta-classifier, consisting of
just one fully-connected layer with one-dimensional output and
sigmoid activation function. More formally, the overall prediction
returned for 𝑥 by this architecture is computed as: 𝑀𝐿𝑃 1(𝐹𝐸(𝑥)⊕
�̃�(1) ⊕ �̃�(2) … , ⊕�̃�(𝑘)), where ⊕ stands for vector concatenation.

• The ensemble_feature combiner architecture is meant to implement
a sort of ‘‘feature-oriented’’ stacking, which takes as input both
the basic ‘‘feature-engineered’’ version of 𝑥 and the higher-level
representations 𝑓 (1),… , 𝑓 (𝑘) that have been derived for 𝑥 by the
base classifiers — which are hence used only as diverse feature ex-
tractors while disregarding their respective final outputs. In other
words, the base classifiers are reused as different ways to map
a data instance to a high-level feature-vector representation that
could be more informative than using the mere predictions �̃�(𝑖)
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and/or a low-level representation of 𝑥. In fact, the idea of merging
Fig. 4. Mixture-of-Expert (MOE) combiner: conceptual architecture.

alternative representations, of the same data, yielded by different
neural networks is widely used in practice in many application
contexts, which primarily include image/text classification [46].
From a structural point of view, this combiner architecture is
identical to the former one, modulo the fact that each prediction
�̃�(𝑖) of the 𝑖th base classifier is replaced with the feature vector 𝑓 (𝑖),
for 𝑖 = 1..𝑘. Precisely, the overall prediction returned for 𝑥 by this
architecture is computed as: 𝑀𝐿𝑃 1(𝐹𝐸(𝑥)⊕𝑓 (1)⊕𝑓 (2) … , ⊕𝑓 (𝑘)),
with ⊕ still denoting vector concatenation.

• The ensemble_moe combiner architecture is meant to implement
a sort of Mixture-of-Experts (MOE) [8] scheme for fusing the
predictions of the base classifiers, so that the final classification
of 𝑥 mainly depends on the predictions of a subset of the base
classifiers (hopefully the classifiers that are more competent for
the instance-space regions related to 𝑥). Specifically, as sketched
in Fig. 4, the architecture employs a (trainable) Gate sub-net that
is devoted to extracting a list 𝑧1,… , 𝑧𝑘 of weights for the base
classifiers, allowing for computing the final anomaly score �̃� as
an optimal convex combination of the predictions �̃�(1),… , �̃�(𝑘)

returned for 𝑥 by the base classifiers. For the sake of simplicity
and of efficiency, the Gate network is made consist of just one
fully-connected layer with softmax activations, hence returning a
(normalized) 𝑘-dimensional vector. Formally, the overall predic-
tion returned for 𝑥 by this architecture is computed as: ∑𝑘

𝑖=1 �̃�𝑖 ⋅𝑧𝑖,
where ⟨𝑧1,… , 𝑧𝑛⟩ = 𝑀𝐿𝑃 𝑘(𝐹𝐸(𝑥)).

As mentioned above, using (an expanded version of) the test in-
stance 𝑥 itself as an additional input allows the latter three (trainable)
architectures possibly to equip the ensemble model with a ‘‘data-
adaptive’’ scheme for fusing the partial information produced, for 𝑥,
by the base models (i.e., abstract feature-vector representations of 𝑥 in
the case of ensemble_feature, or class-membership predictions for 𝑥 in
the cases of both ensemble_stack and ensemble_moe).

6. Experimental investigation

This section illustrates a series of experiments that we conducted
to evaluate the performance of our approach on two realistic intru-
sion detection datasets, widely employed in literature as a benchmark
for NIDS approaches. Different suites of tests were carried out for
different analysis purposes: (i) to empirically evaluate and compare
the alternative model fusion schemes proposed in our framework; (ii)
compare our approach with state-of-the-art IDS solutions and well-
known ensemble-learning methods; and (iii) analyze the behavior of
our ensemble learning approach when a reduced portion of the dataset
is labeled. The next subsection supplies more details on the datasets,
parameters and competitors used in the experimentation.
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6.1. Experimental setup: Datasets and parameters

Datasets. The tests were conducted on two datasets created recently as
a better alternative to the classic ones (e.g., KDD, DARPA, NSL-KDD)
that were widely used in the past to test IDS systems but shown to
suffer from many drawbacks [47,48]: (i) the ISCX IDS dataset [49] from
the Information Security Centre of Excellence of the University of New
Brunswick, and (ii) the CICIDS2017 dataset,4 provided by Canadian
Institute of Cybersecurity, which contains the most up-to-date common
attacks.

In more detail, ISCX IDS is composed of 2,230,620 records, divided
into 7 days, containing different types of attack, i.e., HTTP Denial of
Service, DDos, Brute Force SSH and attempts of infiltrating the sub-
network from the inside (see Table 3). For each day, there are different
sub-groups of attack types; therefore, this dataset is particularly suitable
to our aims, as it represents the situation in which new types of attacks
occur in different periods of time (days).

The CICIDS dataset is divided into five days, from Monday to Friday
and includes six attack profiles based on the last updated list (up to
2017) of common attack families. In more detail, on Monday, only
normal connections are present, while the other days include different
types of attacks [50], i.e., Brute Force FTP, Brute Force SSH, DoS,
Heartbleed, Web Attack, Infiltration, Botnet and DDoS (see Table 4).

The presence of different types of attack for each day make these
two datasets suitable for testing our approach, by fixing a chunking
window of a day. After excluding the days containing no attacks
(namely Day 1 and Day 6 for ISCX, and Monday for CICIDS), we treated
all the remaining days as distinguished data chunks, as described in
Section 4.1.

Notice that the ISCX IDS dataset is quite unbalanced in terms of
class distribution: indeed, the fraction of attack instances per day ranges
from 0.0 to about 0.067. Despite CICIDS is a little more balanced in the
average, in both the datasets, the fraction of attack instances is very
small in most of the days — namely, it is less than 0.04 in three of the
five days in CICIDS and five out of the seven days in ISCX. Moreover,
the distribution of the attack sub-types over the days is very skewed
in both datasets: most of the days feature only attack instances of just
one or two attack sub-types, along with a far larger number of normal
instances. For example, Day 7 of ISCX features only attacks of categories
‘‘HTTP DOS’’ and ‘‘Brute Force SSH’’, representing only 1.435% of
that day’s data, and there are no other day covering both categories.
Similarly, in CICIDS, the attack instances of Thursday just cover 0.483%
of the data of that day and belong only to the categories FTP/SSH
Patator and Web/Infiltration (which do not occur in any other day).
These characteristics make them suitable for evaluating the robustness
of our approach to class imbalance in quite a stressing setting, as it is
really hard to separate the attack class from the majority class (normal
traffic instances).

Test setting. Analogously to what happens in real-life scenarios, we
supposed that only a fraction of the instances in the dataset (and in
each of its associated data chunks) is labeled. In the experiments of
Section 6.5, we made this fraction range from 1% to 33% (in order to
study robustness to training data scarcity), while we fixed it to 5% in
all the other experiments.

In order to assess the performances of each discovered (ensemble)
lassification model, we adopted the following hold-out scheme: for
ach data chunk 𝐷𝑖 (corresponding to the 𝑖th day of the dataset), a test

set 𝑇 𝑒𝑠𝑡𝑖 was extracted from all the instances of the 𝑖th day that were
not in 𝐷𝑖 (i.e. fictitiously considered as unlabeled, in order to simulate
scarcity of training data), by randomly sampling 33% of these instances.
All of these day-related test sets were merged together into an overall
one, devoted to estimating the (global) performances of a classifier over

4 https://www.unb.ca/cic/datasets/ids-2017.html.
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the entire instance space, and hence its capability to detect all the kinds
of attacks present in the dataset. Since in the datasets both the classes
(i.e. attacks vs normal connections/flows) and the day-related groups of
attack types are rather unbalanced, we believe that it is important also
to evaluate the performances of the models on each of these groups
(each capturing a different portion of the class of the attacks). Thus,
we employed each test set 𝑇 𝑒𝑠𝑡𝑖 to measure the ability of a model to
classify accurately the specific group of attack types associated with the
𝑖th day.

As discussed in Section 4.1, 80% of each chunk (containing a
fraction train_perc of the respective day’s training instances) was used
to induce the base models, while leaving the remaining comb_train_perc
= 20% for training the combiner.

Evaluation metrics. Standard metrics for evaluating an IDS-oriented
classifier are the Recall (or True Negative Rate) and Precision, which
give an idea of its capability to individuate the attacks and to avoid
false alarms, respectively. In more detail, the Recall is the fraction of
real attack instances that were reckoned as such (a value of 100% for a
classifier means that it detected all the attacks, but it might also yield
false alarms), whereas the Precision is the proportion of attack instances
detected correctly relative to the number of all the connection instances
classified as attacks (a value of 100% means that no false alarms were
raised, but there may be some real attacks missed).

These two measures are usually merged into a single one, named
(classic) F-Measure, computed as their harmonic mean and offering a
ummarized performance score. For the sake of conciseness and read-
bility, we will next show the F-Measure scores only. Notice, however,
-measure is not really suitable for evaluating classifiers trained on
lass-imbalanced data. For this reason, we resorted to two further
etrics, namely AUC and AUC-PR, which have been widely employed

n the case of imbalanced data (like NIDSs logs), and are described
elow.

The AUC metric quantifies the area under the ROC curve. The ROC
urve is computed comparing the False Positive Rate (i.e., the ratio
etween the number of false alarms signaled and that of all the normal
onnections processed) and the True Positive Rate (i.e., the Recall).

For imbalanced classes, it was proposed to employ the AUC-PR met-
rics (i.e. the area under the Precision–Recall curve), which does not rely
on the True Positive Rate and it is hence less risky in overestimating a
model in settings where the number of normal connections is sensibly
higher than the attacks. However, as a consequence of this aspect,
AUC-PR is more benevolent for approaches raising many false alarms.
For this reason, both these two latter metrics have been used in our
experimental analysis.

Parameters’ setting and competitors. As to the architecture of the base
model, described in Section 5.1, the following configuration was
adopted in all the tests: (i) the Extended Input layer produces

√

𝑥, 𝑥2,
log(𝑥 + 1) and 𝑠𝑖𝑛(𝑥) for every original data feature 𝑋; (ii) the Embed-
ding Layer maps its input onto a 96-dimensional vector space; (iii) 3
Residual Blocks are used, for a total of 6 Building Blocks; (iv) in every
Building Block, the Dense layer consists of 32 neurons, and the dropout
rate is set to 0.01.

This specific instantiation of the proposed DNN architecture was
also employed as-is to implement a baseline competitor, denoted as b-
DNN , allowing us to assess the advantage of training an ensemble of
such DNN classifiers. In order to also assess the beneficial role played
by the residual-like structures in b-DNN , we implemented a further non-
ensemble DNN baseline, denoted as simple-DNN , which differs from
b-DNN only for the absence of the skip connections (and of their
associated summation components) in all of the 3 Residual Blocks; in
other words, simple-DNN can be essentially regarded as a stack of 6
Building Blocks (plus the layers for concatenating the output of each of
these blocks with that of the Embedding layer).

https://www.unb.ca/cic/datasets/ids-2017.html
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Table 3
Main characteristics of the ISCX IDS dataset.

Day Description Size of the pcap file (GB) Number of flows Percentage of attacks

Day 1 Normal traffic without malicious activities 16.1 359,673 0.000%
Day 2 Normal traffic with some malicious activities 4.22 134,752 1.545%
Day 3 Infiltrating the network from the inside & Normal traffic 3.95 153,409 6.395%
Day 4 HTTP Denial of Service & Normal traffic 6.85 178,825 1.855%
Day 5 Distributed Denial of Service using an IRC Botnet 23.4 554,659 6.686%
Day 6 Normal traffic without malicious activities 17.6 505,057 0.000%
Day 7 Brute Force SSH + Normal activities 12.3 344,245 1.435%
Table 4
Main characteristics of the CICIDS dataset.

Day Description Size of the pcap file (GB) Number of flows Percentage of attacks

Monday Normal traffic without malicious activities 10.0 529,918 0.000%
Tuesday FTP-Patator, SSH-Patator 10.0 445,909 3.103%
Wednesday Dos attacks, Heartbleed 12.0 692,703 36.476%
Thursday Web attacks, Infiltration 7.7 458,968 0.483%
Friday Bot, DDos, Port Scan 8.2 704,245 41.025%
Our framework and the DNN baselines b-DNN and simple-DNN were
mplemented in Python (using the Keras framework on top of Tensor-
low), and trained with the RMSprop (Root Mean Square Propagation)
ptimizer.

For the sake of comparison, we also tested several major ensemble-
ased classification methods, leveraging the respective implementa-
ions available in the scikit-multiflow library.5 These algorithms are
escribed in detail in Section 6.3. If not specified differently, they
ere run using standard parameters, without performing any kind of
arameters’ tuning. All the experiments were performed on a Linux
luster with 16 Itanium2 1.4 GHz nodes, each having 2 GB of main
emory and connected by a Myrinet high performance network.

.2. Comparing different DNN ensembles: an analysis of the proposed
ombiners

Generally, in IDS scenarios, owing to the highly heterogeneous
nd changing nature of the intrusion attacks, most classifiers may
ell exhibit different performances in recognizing different attack sub-

lasses. In this respect, let us recall that both datasets used in our
xperimentation presents different types of attacks on different days,
ach of which corresponds to a data chunk of our ensemble learning
pproach.

The objective of this first suite of experiments is to analyze com-
aratively the behavior of the different combining schemes described
n Section 5.2, and to understand eventually which of them are more
ffective in general/global terms, and each of the sub-classes of attacks
epresented by the different days. Therefore, we run our approach
ith each of the proposed combining strategies (namely, ensemble_moe,

nsemble_stack, ensemble_max and ensemble_feature), and evaluated the
uality of the resulting ensemble models against both the entire collec-
ion of test instances and the subsets of test instances associated with
he days/chunks.

The F-measure, the AUC and the AUC-PR scores obtained, for each
ay, by the considered ensembles, are shown in Tables 5 and 6, for the
SCX and the CICIDS datasets, respectively.

In addition, the section of the table named All attacks refers to the
ituation in which the discovered ensemble models are evaluated on all
he test instances (i.e. the union of 𝑇 𝑒𝑠𝑡𝑖, for all days 𝑖), and provides
n overall evaluation of the classifiers performances across the entire
nstance space (and all kinds of attacks).

We performed the Friedman test [51] for all the evaluation mea-
ures (columns) of Tables 5 and 6 and also for all the tables in the
ext subsection (Tables 7 and 8). The critical value of the Friedman

5 https://scikit-multiflow.github.io/scikit-multiflow/index.html.
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Table 5
Comparison of the different ensemble strategies: F-measure, AUC and AUC-PR for the
ISCX dataset using 5% of the dataset: the first and second algorithm (or group of
algorithms) that is significantly better than at least three other approaches are reported
in bold and gray, respectively.

Dataset Algorithm F_measure AUC AUC-PR

All attacks

ensemble_feature 0.948 ± 0.027 0.999 ± 0.001 0.981 ± 0.010
ensemble_moe 0.960 ± 0.007 𝟏.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟎 ± 𝟎.𝟎𝟎𝟓
ensemble_stack 0.922 ± 0.051 0.989 ± 0.022 0.953 ± 0.048
ensemble_max 0.938 ± 0.033 0.999 ± 0.001 0.978 ± 0.011

Day 2

ensemble_feature 0.967 ± 0.011 𝟏.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟖𝟔 ± 𝟎.𝟎𝟏𝟔
ensemble_moe 0.971 ± 0.010 𝟏.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟓 ± 𝟎.𝟎𝟎𝟗
ensemble_stack 0.960 ± 0.022 0.996 ± 0.006 0.976 ± 0.023
ensemble_max 0.964 ± 0.012 0.999 ± 0.001 0.981 ± 0.005

Day 3

ensemble_feature 0.693 ± 0.033 0.953 ± 0.012 0.614 ± 0.011
ensemble_moe 𝟎.𝟕𝟐𝟎 ± 𝟎.𝟎𝟑𝟓 𝟎.𝟗𝟔𝟐 ± 𝟎.𝟎𝟎𝟓 𝟎.𝟔𝟑𝟐 ± 𝟎.𝟎𝟎𝟑
ensemble_stack 0.644 ± 0.120 0.942 ± 0.039 0.591 ± 0.034
ensemble_max 0.693 ± 0.050 𝟎.𝟗𝟔𝟎 ± 𝟎.𝟎𝟎𝟒 0.617 ± 0.012

Day 4

ensemble_feature 0.552 ± 0.031 0.977 ± 0.010 0.420 ± 0.017
ensemble_moe 𝟎.𝟓𝟔𝟗 ± 𝟎.𝟎𝟏𝟔 𝟎.𝟗𝟖𝟒 ± 𝟎.𝟎𝟎𝟐 0.435 ± 0.019
ensemble_stack 0.544 ± 0.033 0.944 ± 0.073 0.412 ± 0.064
ensemble_max 0.533 ± 0.071 0.976 ± 0.008 0.418 ± 0.018

Day 5

ensemble_feature 0.915 ± 0.002 0.996 ± 0.002 0.946 ± 0.022
ensemble_moe 𝟎.𝟗𝟒𝟗 ± 𝟎.𝟎𝟏𝟖 𝟎.𝟗𝟗𝟗 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟖𝟕 ± 𝟎.𝟎𝟎𝟑
ensemble_stack 0.918 ± 0.009 0.996 ± 0.002 0.940 ± 0.035
ensemble_max 0.932 ± 0.020 𝟎.𝟗𝟗𝟖 ± 𝟎.𝟎𝟎𝟐 0.929 ± 0.053

Day 7

ensemble_feature 𝟎.𝟗𝟒𝟔 ± 𝟎.𝟎𝟑𝟏 0.999 ± 0.001 0.980 ± 0.012
ensemble_moe 𝟎.𝟗𝟓𝟗 ± 𝟎.𝟎𝟎𝟖 𝟏.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟖𝟗 ± 𝟎.𝟎𝟎𝟔
ensemble_stack 0.917 ± 0.055 0.988 ± 0.025 0.950 ± 0.051
ensemble_max 0.925 ± 0.033 0.999 ± 0.001 0.973 ± 0.011

test is obtained from a chi-square distribution with two degrees of
freedom and a significance level of 5%. The Friedman test is a non-
parametric statistical test and it is used to detect differences across
multiple methods. The null hypothesis of this test is that the median
value of all the populations is equal.

However, the Friedman test cannot be used alone to rank different
methods, but it can be used only to detect whether the results are
significantly different. Once the Friedman test rejects the null hypoth-
esis, a post-hoc test is required in order to find the concrete pairwise
comparison, which produces differences. To verify the differences be-
tween each couple of algorithms, the Nemenyi post-hoc test [51] is
adopted. To better note the differences among the algorithms, when
the Friedman test detects differences, we adopt the following strategy;
we ranked the algorithms (on the basis of the results of the Nemenyi
post-hoc test) by dividing them into groups (the algorithms in the same
group are not significantly different) and we highlight in bold the first
algorithm (or group of) and in gray the second algorithm (or group of)
if it is significantly better than at least two other approaches. If the

https://scikit-multiflow.github.io/scikit-multiflow/index.html
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Table 6
Comparison of the different ensemble strategies: F-measure, AUC and AUC-PR for the
CICIDS dataset using 5% of the dataset: the first and second algorithm (or group of
algorithms) that is significantly better than at least three other approaches are reported
in bold and gray, respectively.

Dataset Algorithm F_measure AUC AUC-PR

All attacks

ensemble_feature 0.977 ± 0.075 0.995 ± 0.018 0.994 ± 0.023
ensemble_moe 0.995 ± 0.001 𝟏.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎
ensemble_stack 0.988 ± 0.015 0.998 ± 0.002 0.998 ± 0.002
ensemble_max 0.965 ± 0.006 0.993 ± 0.007 0.993 ± 0.012

Tuesday

ensemble_feature 0.943 ± 0.021 0.998 ± 0.001 0.978 ± 0.013
ensemble_moe 0.948 ± 0.035 0.999 ± 0.001 0.978 ± 0.018
ensemble_stack 0.940 ± 0.027 0.981 ± 0.049 0.969 ± 0.029
ensemble_max 0.920 ± 0.086 0.987 ± 0.030 0.951 ± 0.062

Wednesday

ensemble_feature 𝟎.𝟗𝟖𝟗 ± 𝟎.𝟎𝟎𝟔 𝟎.𝟗𝟗𝟗 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟗 ± 𝟎.𝟎𝟎𝟎
ensemble_moe 𝟎.𝟗𝟗𝟏 ± 𝟎.𝟎𝟎𝟒 𝟎.𝟗𝟗𝟗 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟗 ± 𝟎.𝟎𝟎𝟎
ensemble_stack 0.984 ± 0.019 0.998 ± 0.005 0.997 ± 0.005
ensemble_max 0.986 ± 0.010 0.996 ± 0.003 0.995 ± 0.003

Thursday

ensemble_feature 0.805 ± 0.094 0.982 ± 0.015 0.783 ± 0.076
ensemble_moe 0.803 ± 0.110 0.983 ± 0.012 𝟎.𝟖𝟎𝟐 ± 𝟎.𝟎𝟖𝟏
ensemble_stack 0.790 ± 0.099 0.975 ± 0.021 0.778 ± 0.090
ensemble_max 0.772 ± 0.131 0.980 ± 0.009 0.736 ± 0.080

Friday

ensemble_feature 0.978 ± 0.077 0.996 ± 0.018 0.995 ± 0.019
ensemble_moe 0.996 ± 0.001 𝟏.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎
ensemble_stack 0.989 ± 0.014 0.999 ± 0.001 0.999 ± 0.001
ensemble_max 0.972 ± 0.056 0.994 ± 0.006 0.993 ± 0.008

Friedman test fails, no algorithms are highlighted, as the differences are
not significant.

By analyzing the table concerning the ISCX dataset, it is evident
that the MOE strategy obtains the best results for all the measures,
and also for all the days/chunks, representing different sub-groups
of attacks. In more detail, the differences in terms of AUC are not
substantial, while, as for the AUC-PR, the differences are significant
in comparison with all the other techniques and also considering each
day, with the exception of the day 4, in which the performance of
the different algorithm are not significantly different. As for the other
combiner schemes, ensemble_feature generally performs slightly better
han the other algorithms, even if in many cases, there is no significant
ifference with the remaining techniques. As for the CICIDS dataset
Table 8), the MOE combination strategy performs better than the
thers on the overall dataset, and for the relevant metric of AUC-PR, it
btains better results for Thursday and Friday, while for the other two
ays, all the techniques perform equally well.

These experimental findings empirically demonstrate the validity
f introducing the ad hoc schemes ensemble_moe, ensemble_stack, en-

semble_feature) for fusing the predictions of specialized base classifiers
(cf. issue i4 in Section 2.2) –trained, indeed, on data chunks (days)
featuring quite different data distributions.

Having said this, it is worth noticing that the performances of the
different combining strategies do not differ in a dramatic way. Thus, in
application scenarios where there are stringent computation constraints
(e.g., owing to very high streaming rates and very short chunking
windows), one could even opt for the faster non-trainable ensemble_max
combiner, while tolerating some degradation of the detection accuracy.

6.3. Comparing with baseline and ensemble-based algorithms

Based on the analysis conducted in the previous subsection, the
MOE-based combination strategy appears to be the best performing one
(across all the evaluation metrics considered). Therefore, in this sub-
section, we deeply compare the ensemble_moe variant of our approach
with other well-known incremental ensemble-based algorithms, with
the baseline DNN model used and with a simple DNN model. The choice
of focusing on existing incremental learning methods in this analysis
reflects the fundamental requirement of dealing with the definitely
non-stationary nature of IDS data.
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Table 7
Comparison of the MOE-based ensemble with the competitors and the baseline: F-
measure, AUC and AUC-PR for the ISCX dataset using 5% of the dataset: the first and
second algorithm (or group of algorithms) that is significantly better than at least three
other approaches are reported in bold and gray, respectively.

Dataset Algorithm F_measure AUC AUC-PR

All attacks

ensemble_moe 0.960 ± 0.007 𝟏.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟎 ± 𝟎.𝟎𝟎𝟓
b-DNN 0.930 ± 0.022 0.997 ± 0.001 0.981 ± 0.010
simple-DNN 0.929 ± 0.023 0.995 ± 0.001 0.945 ± 0.035
ozabag knn 0.940 ± 0.020 0.964 ± 0.016 0.941 ± 0.020
ozabag htree 0.968 ± 0.015 0.974 ± 0.013 0.969 ± 0.014
learn++.nse 0.924 ± 0.039 0.937 ± 0.028 0.929 ± 0.037
online boosting 𝟎.𝟗𝟕𝟔 ± 𝟎.𝟎𝟎𝟖 0.986 ± 0.005 0.976 ± 0.007

Day 2

ensemble_moe 0.971 ± 0.010 𝟏.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟓 ± 𝟎.𝟎𝟎𝟗
b-DNN 0.962 ± 0.008 𝟎.𝟗𝟗𝟖 ± 𝟎.𝟎𝟎𝟐 𝟎.𝟗𝟗𝟐 ± 𝟎.𝟎𝟎𝟓
simple-DNN 0.921 ± 0.020 0.992 ± 0.002 0.901 ± 0.061
ozabag knn 0.844 ± 0.042 0.909 ± 0.047 0.875 ± 0.056
ozabag htree 0.964 ± 0.023 0.979 ± 0.018 0.965 ± 0.022
learn++.nse 0.681 ± 0.053 0.760 ± 0.068 0.850 ± 0.062
online boosting 0.963 ± 0.022 0.981 ± 0.018 0.964 ± 0.021

Day 3

ensemble_moe 𝟎.𝟕𝟐𝟎 ± 𝟎.𝟎𝟑𝟓 𝟎.𝟗𝟔𝟐 ± 𝟎.𝟎𝟎𝟓 0.632 ± 0.003
b-DNN 0.654 ± 0.041 0.943 ± 0.015 0.613 ± 0.018
simple-DNN 0.635 ± 0.085 0.905 ± 0.005 0.606 ± 0.038
ozabag knn 0.402 ± 0.107 0.658 ± 0.056 0.457 ± 0.091
ozabag htree 0.648 ± 0.069 0.864 ± 0.052 𝟎.𝟕𝟎𝟖 ± 𝟎.𝟎𝟒𝟒
learn++.nse 0.539 ± 0.060 0.718 ± 0.043 0.585 ± 0.041
online boosting 0.591 ± 0.066 0.766 ± 0.049 0.621 ± 0.048

Day 4

ensemble_moe 𝟎.𝟓𝟔𝟗 ± 𝟎.𝟎𝟏𝟔 𝟎.𝟗𝟖𝟒 ± 𝟎.𝟎𝟎𝟐 0.435 ± 0.019
b-DNN 0.526 ± 0.030 0.969 ± 0.016 0.422 ± 0.028
simple-DNN 0.445 ± 0.102 0.962 ± 0.005 0.404 ± 0.037
ozabag knn 0.402 ± 0.065 0.685 ± 0.049 0.415 ± 0.061
ozabag htree 0.367 ± 0.070 0.686 ± 0.077 0.425 ± 0.079
learn++.nse 0.216 ± 0.088 0.573 ± 0.047 0.334 ± 0.048
online boosting 0.397 ± 0.085 0.681 ± 0.062 0.418 ± 0.068

Day 5

ensemble_moe 0.949 ± 0.018 𝟎.𝟗𝟗𝟗 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟖𝟕 ± 𝟎.𝟎𝟎𝟑
b-DNN 0.931 ± 0.009 𝟎.𝟗𝟗𝟖 ± 𝟎.𝟎𝟎𝟏 0.978 ± 0.014
simple-DNN 0.932 ± 0.016 𝟎.𝟗𝟗𝟕 ± 𝟎.𝟎𝟎𝟏 0.971 ± 0.013
ozabag knn 0.970 ± 0.004 0.989 ± 0.004 0.975 ± 0.004
ozabag htree 0.950 ± 0.013 0.986 ± 0.005 0.951 ± 0.012
learn++.nse 0.966 ± 0.007 0.972 ± 0.007 0.968 ± 0.006
online boosting 𝟎.𝟗𝟕𝟔 ± 𝟎.𝟎𝟎𝟒 0.986 ± 0.004 0.977 ± 0.004

Day 7

ensemble_moe 0.959 ± 0.008 𝟏.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟖𝟗 ± 𝟎.𝟎𝟎𝟔
b-DNN 0.934 ± 0.024 𝟎.𝟗𝟗𝟗 ± 𝟎.𝟎𝟎𝟏 0.980 ± 0.011
simple-DNN 0.920 ± 0.024 𝟎.𝟗𝟗𝟖 ± 𝟎.𝟎𝟎𝟏 0.951 ± 0.033
ozabag knn 0.947 ± 0.020 0.969 ± 0.014 0.948 ± 0.020
ozabag htree 0.968 ± 0.016 0.973 ± 0.014 0.969 ± 0.015
learn++.nse 0.967 ± 0.030 0.974 ± 0.023 0.968 ± 0.029
online boosting 𝟎.𝟗𝟕𝟖 ± 𝟎.𝟎𝟎𝟖 0.987 ± 0.005 0.977 ± 0.007

In more detail, our approach is compared with the two baseline
neural-network models described in Section 6.1 and with four re-
cent incremental learning approaches to the discovery of ensemble
classifiers (all having a public implementation available in the scikit
multi-flow library): two versions of the OzaBagging algorithm [52], re-
spectively instantiated with a KNN and an Hoeffding-Tree base learner,
the Learn++.NSE [6] and the Online Boosting algorithm [53].

Basically, the OzaBagging method can be considered as an adapta-
tion of the well-known Bagging algorithm [54] to online classification
settings that employs a Poisson distribution to decide whether an
example will be used or not for training the chain of classifiers.

Online Boosting uses the same strategies as OzaBagging, but adapted
to the Boosting algorithm [54].

Finally, Learn++.NSE first trains one classifier for each chunk of
he data, and then combines these classifiers by using a dynamically
eighted majority voting. The weights are automatically computed on

he basis of the accuracy of each classifier (adjusted considering the
ime of the data) on current and past environments.

Tables 7 and 8 report the final result of the comparison among the
OE-based ensemble and the competitors, respectively for the ISCX

nd the CICIDS dataset. In all the experiments we considered as metrics,
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Table 8
Comparison of the MOE-based ensemble with the competitors and the baseline: F-
measure, AUC and AUC-PR for the CICIDS dataset using 5% of the dataset: the first
nd second algorithm (or group of algorithms) that is significantly better than at least
hree other approaches are reported in bold and gray, respectively.
Dataset Algorithm F_measure AUC AUC-PR

All attacks

ensemble_moe 0.995 ± 0.001 𝟏.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎
b-DNN 0.987 ± 0.012 0.998 ± 0.001 0.997 ± 0.000
simple-DNN 0.977 ± 0.023 0.996 ± 0.002 0.995 ± 0.002
ozabag knn 0.992 ± 0.001 0.994 ± 0.001 0.993 ± 0.001
ozabag htree 0.994 ± 0.001 0.995 ± 0.001 0.996 ± 0.001
learn++.nse 0.994 ± 0.001 0.996 ± 0.001 0.995 ± 0.001
online boosting 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟏 0.997 ± 0.000 0.997 ± 0.000

Tuesday

ensemble_moe 0.948 ± 0.035 𝟎.𝟗𝟗𝟗 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟕𝟖 ± 𝟎.𝟎𝟏𝟖
b-DNN 0.873 ± 0.070 0.996 ± 0.002 0.942 ± 0.061
simple-DNN 0.739 ± 0.173 0.985 ± 0.032 0.837 ± 0.169
ozabag knn 0.879 ± 0.009 0.993 ± 0.000 0.891 ± 0.007
ozabag htree 0.827 ± 0.093 0.863 ± 0.073 0.860 ± 0.067
learn++.nse 0.961 ± 0.014 0.989 ± 0.005 0.962 ± 0.013
online boosting 𝟎.𝟗𝟖𝟏 ± 𝟎.𝟎𝟏𝟏 0.989 ± 0.006 𝟎.𝟗𝟖𝟐 ± 𝟎.𝟎𝟏𝟏

Wednesday

ensemble_moe 0.991 ± 0.004 𝟎.𝟗𝟗𝟗 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟗 ± 𝟎.𝟎𝟎𝟎
b-DNN 0.979 ± 0.016 0.998 ± 0.003 0.998 ± 0.003
simple-DNN 0.960 ± 0.029 0.995 ± 0.001 0.995 ± 0.002
ozabag knn 0.989 ± 0.001 0.992 ± 0.000 0.990 ± 0.001
ozabag htree 0.985 ± 0.010 0.987 ± 0.010 0.989 ± 0.006
learn++.nse 𝟎.𝟗𝟗𝟑 ± 𝟎.𝟎𝟎𝟏 0.995 ± 0.001 0.994 ± 0.001
online boosting 0.991 ± 0.004 0.992 ± 0.004 0.994 ± 0.002

Thursday

ensemble_moe 𝟎.𝟖𝟎𝟑 ± 𝟎.𝟎𝟖𝟓 𝟎.𝟗𝟖𝟑 ± 𝟎.𝟎𝟏𝟐 𝟎.𝟖𝟎𝟐 ± 𝟎.𝟎𝟖𝟏
b-DNN 0.490 ± 0.305 0.941 ± 0.045 0.498 ± 0.285
simple-DNN 0.364 ± 0.325 0.927 ± 0.063 0.365 ± 0.205
ozabag knn 0.297 ± 0.018 0.724 ± 0.042 0.341 ± 0.042
ozabag htree 0.134 ± 0.278 0.557 ± 0.126 0.179 ± 0.277
learn++.nse 0.769 ± 0.055 0.930 ± 0.031 𝟎.𝟕𝟖𝟏 ± 𝟎.𝟎𝟓𝟎
online boosting 𝟎.𝟖𝟐𝟕 ± 𝟎.𝟎𝟒𝟔 0.903 ± 0.029 𝟎.𝟖𝟐𝟗 ± 𝟎.𝟎𝟒𝟓

Friday

ensemble_moe 0.996 ± 0.001 𝟏.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎
b-DNN 0.989 ± 0.013 0.999 ± 0.000 0.998 ± 0.000
simple-DNN 0.980 ± 0.022 0.997 ± 0.002 0.998 ± 0.002
ozabag knn 0.993 ± 0.001 0.994 ± 0.001 0.995 ± 0.001
ozabag htree 0.996 ± 0.000 0.997 ± 0.000 0.998 ± 0.000
learn++.nse 0.995 ± 0.001 0.995 ± 0.001 0.995 ± 0.001
online boosting 0.996 ± 0.000 0.997 ± 0.000 0.997 ± 0.000

the F-measure, AUC and AUC-PR by considering a labeled set of 5% of
the entire chunk/dataset.

For the ISCX dataset, our approach is significantly better than all the
other approaches for the overall dataset both in terms of AUC and AUC-
PR. By analyzing these measures on a per-day basis, the ensemble_moe
performs better than the other strategies (or in the group of the best
ones), for all the days, with the exception of the AUC-PR on day 3, in
which the better choice is the OzaBagging (Hoeffding Tree version),
and on day 4, in which there is no significant difference among the
different approaches. As for the F-measure, Online Boosting obtains the
highest value in the overall dataset and in 2 out of 5 days, while our
approach is the best choice in 2 out of 5 days, but is quite close to
the accuracy obtained by Online Boosting (i.e., 0.950 vs 0.960 for the
overall dataset).

Observing the results reported in Table 8 for the CICIDS dataset,
the trend is confirmed; indeed, the ensemble_moe is significantly better
than the others (or in the group of the best ones), in the overall dataset
and in each day, both in terms of AUC and AUC-PR, while for the
F-measure, Online Boosting outperforms the other approaches in the
overall dataset and on both Tuesday and Thursday (together with our
approach); however the ensemble_moe is only slightly worse than the
online boosting in all the cases (i.e., 0.995 vs 0.996 for the overall
dataset).

Let us finally notice that, the baseline b-DNN performs generally
better than simple-DNN , as expected. This confirms, indeed, the ben-
efit of inserting residual-like components in the proposed base DNN
architecture.
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Table 9
Comparison of the MOE ensemble-based approach with three recent ensembles of IDS:
Accuracy, DR and FAR for the Wednesday partition of the CICIDS dataset.

Algorithm ACC DR FAR

XGBoost-IDS 0.9136 0.9838 0.1200
HELAD 0.9958 0.9958 0.0215
CFS-BA ensemble 0.9989 0.9990 0.0012
ensemble_moe 0.9979 0.9991 0.0028

Interestingly, the results in Tables 7 and 8 provide empirical ev-
idence for the ability of our approach to deal effectively with the
unbalanced nature of NIDS data (cf., issue I3 in Section 2.2). In particu-
lar, the performances reached on very unbalanced test subsets (e.g., like
those related to Day 7 in ISCX IDS and Thursday in CICIDS) are
remarkable, and show how the proposed approach outperforms the
competitors (and its base DNN model) in classifying difficult subsets
of the test data.

6.4. Comparison with ensemble-based IDS

In the previous subsection, we analyzed a number of popular
ensemble-based algorithms that all rely on an incremental learning
strategy. To better substantiate the significance of our approach, we
also analyzed its behavior in comparison with other state-of-the-art
ensembles for IDS. Differently from our approach, these works were
designed appositely to work with intrusion detection datasets, and
most of them include ad-hoc preprocessing modules. Therefore, in a
sense, they can be considered orthogonal to our work, since we could
integrate their preprocessing modules into our approach in order to
improve its performances.

Specifically, as a first competitor we selected the approach pro-
posed in [18] and denoted as CFS-BA ensemble hereinafter, which
leverages a heuristic feature-selection algorithm, called CFS-BA (for
selecting an optimal subset of features based on the correlation between
them). An ensemble model is eventually built that combines C4.5,
Random Forest (RF) and Forest PA (Penalizing Attributes) through
an average-of-probabilities (AOP) rule. As a further competitor, we
selected the HELAD system [30], which exploits an ad hoc ensemble of
(Autoencoder-based and LSTM-based) anomaly detectors, and different
modules for feature extraction and reduction. The last competitor con-
sidered in our analysis is XGBoost-IDS [55], which essentially reuses
the popular eXtreme Gradient Boosting algorithm (as an off-the-shelf
ensemble-like classifier), combined with ad hoc parameter tuning and
preprocessing modules, specifically tailored to NIDS data. Notably, all
of these methods were shown to work quite effectively on CICIDS data
— see Section 3 for more details on the former two methods (which
are more related to our approach, from a conceptual viewpoint).

Following the testing procedure of [18], for these experiments, we
used the Wednesday partition of the CICIDS dataset (with 691,406
instances and 44,858 attacks divided into 5 different types) and we
adopted the metrics of accuracy (ACC), detection rate (DR) and false
alarm rate (FAR). We also performed the same simple preprocessing
and data normalization steps as in [18], for the sake of fair comparison;
however, we did not exploited the more complex and time consuming
CFS-BA feature selection method introduced in that paper.

From Table 9, in which the test results are summarized, it is evident
that ensemble_moe outperforms both HELAD and the XGBoost-IDS in
terms of accuracy, detection rate and false alarm rate. On the contrary,
the CFS-BA ensemble performs very well in terms of false alarm rate
in comparison with all the approaches. In terms of detection rate
and accuracy, the differences with our approach are not substantial.
However, the really good behavior of CFS-BA ensemble is mainly owing
to the preprocessing heuristic algorithm, which could be also used
in our approach. Indeed, without using the CFS-BA preprocessing, it
manages to obtain a FAR of 0.02, that is comparable with that achieved

by our approach.
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Table 10
Comparison of the training time of the base DNN models (average) and of the different
ensemble-based approaches, for different percentages of the labeled training set (1%,
2%, 5% and 10% of the entire dataset).

Algorithm 1% 2% 5% 10%

DNN 10.95 ± 0.79 14.43 ± 0.66 29.29 ± 2.40 51.01 ± 4.43
ensemble_feature 16.19 ± 1.03 21.38 ± 1.04 45.04 ± 3.45 76.38 ± 10.30
ensemble_moe 14.57 ± 1.02 18.85 ± 1.18 38.10 ± 3.34 65.17 ± 7.72
ensemble_stack 11.97 ± 1.14 16.75 ± 0.63 33.40 ± 2.63 59.75 ± 5.50

6.5. Sensitiveness to the scarcity of training data

This subsection aims to analyze the behavior of our ensemble-based
algorithm when a reduced portion of the tuples is labeled. In order to
mimic real-world scenarios, we supposed that this percentage varies
from 1% to 33%.

Figs. 5 and 6, respectively for the ISCX and the CICIDS dataset, show
the two metrics of AUC and AUC-PR for the comparison between the
MOE-based ensemble and the baseline method b-DNN (corresponding
to inducing just one instance of the base DNN model from the entire
training set), when the percentage of labeled training set is 1%, 2%,
5%, 10% and 33% of the dataset (chunk). Figs. 5a–5e (Figs. 6a–6d for
CICIDS) consider respectively the single chunks/days, while Fig. 5f (6e
for CICIDS) considers the situation in which test instances sampled from
the whole dataset are given to the discovered models.

Considering the ISCX dataset, for the cases of the single days and
even for all the attacks, it is evident that the ensemble obtains a good
accuracy even for a small percentage of labeled data (down to 1% of the
data) both in terms of AUC and AUC-PR. On the contrary, as expected,
the DNN base model, while reaches results comparable (even if slightly
worse) for high percentages of data (5%, 10% and 33%), fails to reach
an acceptable level of accuracy, especially in terms of AUC-PR, which
is a metric particularly significant for the case of unbalanced datasets.
The same trend can be observed for the CICIDS dataset, even if the
differences between the ensemble and the base DNN are less evident.
In particular, for the hard case of the attacks detected on Thursday, the
ensemble needs to work with 20% of the training data to reach about
0.8 against about 0.5 for the base DNN (in terms of AUC-PR).

In summary, the performance scores reported in Figs. 5 and 6, let
us conclude that our approach copes effectively with the scarcity of
labeled data (issue I2, cf. Section 2.2), and that combining multiple
DNN classifiers according to the proposed ensemble scheme allows for
neatly improving the base learner.

6.6. Efficiency analysis

An ideal IDS should analyze network traffic data and respond very
quickly to attacks. However, the speed in answering to these attacks,
mainly depends on the pre-processing phase, including also packet
capturing and decoding and on the time necessary to detect the attacks.
In this paper, we are not interested in the speed of the pre-processing
phase, also because there are many efficient solutions exploiting multi-
core and distributed architectures [56], which can also be included in
our IDS. However, the speed of detection of known attacks and the time
necessary to detect new attacks, which can be very long for supervised
IDS, is crucial for reducing the damages that may be caused.

In order to assess the detection time both for known attacks (test
time) and for new types of attack (training time), in this subsection, we
measured these times for different partitioning of the overall CICIDS
dataset (2,301,825 of tuples), varying from 1% to 10% of its data
instances.

Table 10 shows the average training time of the base DNN models
and the training time for the different ensemble-based approaches
when the percentage of labeled training data is 1%, 2%, 5% and
10%. It is important to note that the training time reported concerns
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only the construction of the combiner sub-model. We omit instead the
time necessary to build the base models, since these could be trained
incrementally on their respective data chunks as soon as they arrive.
Moreover, the times shown in the table could be reduced substantially
by using a parallelized computation scheme, using a multi-core or
distributed architecture. In addition, these results should be interpreted
with the understanding that the algorithms are not optimized as for
the execution time, neither do they exploit the advantage of GPUs. The
overhead of the ensemble_max is not reported because it is negligible, as
it simply computes the maximum of the different base models, without
any additional computation.

Considering a percentage of 1% (2%) of the dataset, which is suffi-
cient to obtain a good degree of accuracy, the overhead due to using
an ensemble of classifiers varies from about 12 (17) seconds for the en-
semble_stack approach to about 16 (21) seconds for the ensemble_feature
method.

As for the test time, once the classifiers are trained, it is quite fast
and does not slow down the process of detecting the attacks. Indeed,
this time, computed for 1000 tuples, is 0.155 s for the DNN base model
and it varies slightly from 0.549 s for the ensemble_stack to a maximum
of 0.589 s for the ensemble_feature. Obviously for the ensemble_max, the
overhead in comparison with the base models is negligible.

Anyway, in spite of having a higher computational overhead, the
big advantage of using an ensemble-based approach, as verified exper-
imentally in Section 6.5, is that it can obtain a good level of accuracy
by using a lower number of labeled tuples in comparison with base
models. One could object that a possible solution would be to use
a base model with a higher percentage of training set, instead using
an ensemble-based approach with a lower number of examples, and
obtaining the same detection time. However, in spite of having the
same accuracy, collecting a higher number of labeled data can be costly
and in some cases not applicable, because no sufficient labeled attacks
may be available.

7. Conclusion, discussion and future work

7.1. Summary of the contribution

A framework for coping with the IDS task, based on a chunk-
wise ensemble learning scheme, is proposed here. The framework first
builds up a number of specialized base DNN classifiers, induced from
disjoint segments of a data stream, then fuses the outputs of these
classifiers by means of different combiner sub-nets. In more details,
four alternative NN architectures are proposed as a combiner: a simple
non-trainable architecture, named ensemble_max, that simply returns
the class predicted with the highest probability and three trainable
architectures, named ensemble_stack, ensemble_feature and ensemble_moe
that automatically learn the combining function on the basis of the
features and the characteristics of the data itself.

Notably, the proposal addresses several challenging issues that tend
to affect real-life NIDS scenarios, which primarily include the scarcity
and unbalancedness of training data and the local nature of the data
chunks, in addition to the non-stationarity of attack behaviors. In
particular, the base classifiers in our ensemble model are built by
training a DNN architecture featuring both dropout layers and residual-
like skip connections (providing ensemble-like capabilities internally to
each base classifier and allowing for curbing the risks of overfitting
and slow convergence), using a cost-sensitive loss function (allowing
for paying adequate attention to the detection of attack instances,
representing samples of the minority class).

The empirical results, obtained on two popular benchmark IDS
datasets, have confirmed the better accuracy in terms of AUC and
AUC-PR of our approach, compared to existing incremental and non-
stationary learning solutions, both on the overall datasets and on most
of the different subsets of attacks considered. In particular, among
the alternative schemes for the combiner sub-net, the MOE-based one
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Fig. 5. Comparison of the MOE-based ensemble with the DNN using the AUC and AUC-PR for the ISCX dataset using 1%, 2%, 5%, 10% and 33% of the dataset.
(ensemble_moe) outperforms the other schemes. In more detail, MOE
performs better than the others both for the ISCX dataset and for
the CICIDS dataset, specifically on the entire dataset and for most of
the single days, especially for the metric of AUC-PR. However, in a
scenario with hard computation constraints (e.g., owing to very high
streaming rates and very short chunking windows), the faster non-
trainable ensemble ensemble_max combiner could be a valid alternative,
in spite of accepting some degradation in the detection accuracy.

Despite our experimental analysis have provided some evidence
for the ability of our approach to deal with changing and recurring
behaviors, we did not evaluated it in an online IDS settings, also due
to the lack of benchmark NIDS datasets with long enough temporal
coverage. In order to further investigate on this respect, we conducted
a few additional tests, simulating an incremental train-and-test usage
of our approach over an artificial (three-week ever changing) stream of
data extracted from dataset CICIDS. The results of these trials, discussed
in brief in Appendix, confirmed the effectiveness of our approach over
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non stationary data, and its superiority to a purely incremental DNN
classifier. A more extensive evaluation of our approach in online clas-
sification settings, possibly, with the help of long spanning benchmark
NIDS datasets, is out of the scope of this work — to the best of our
knowledge, such an evaluation of IDSs is lacking in the literature, likely
due to the lack of benchmark datasets that both cover a long enough
time range and exhibit different kinds of concept drifts.

Finally, an analysis of the sensitivity to the scarcity of training
data establishes that the use of the ensemble, in comparison with the
DNN architecture alone (trained as a single DNN classifier), permits a
better level of accuracy to be obtained even when a small percentage
of labeled data is used. In fact, also using 1% of the training data,
the ensemble reaches a good performance, while the DNN base model
needs a higher amount of data (from 10% and over) to reach an
acceptable level of performance, especially in terms of AUC-PR, which
is particularly relevant for unbalanced data.
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Fig. 6. Comparison of the MOE-based ensemble with the DNN using the AUC and AUC-PR for the CICIDS dataset using 1%, 2%, 5%, 10% and 33% of the dataset.
7.2. Novelty and significance of the contribution

To the best of our knowledge, the combination of deep learning
and chunk-based learning techniques is an unexplored line of research
in the current literature, despite the former kind of techniques having
been proven very powerful in IDS settings, while chunk-wise ensemble
learning is widely reckoned as a quite effective and efficient strategy
for the analysis of non-stationary data [6,7], such as those that typically
occur in IDS logs. As a matter of fact, the specific problem setting
considered in this paper (featuring a mixture of challenging issues,
concerning the use of non-stationary and small training samples, the
presence unbalanced classes and especially the need for fusing spe-
cialized base classifiers) looks quite novel in itself with respect to the
literature in the field.

The chunk-wise ensemble learning scheme and the peculiar DNN
architectures adopted in our approach, make it quite different from all
the solutions employing DNN classifiers or ensembles of such classi-
fiers that have been proposed in the field of (N)IDSs (cf. Section 3).
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In particular, an important distinguishing trait of our proposal with
respect to previous DNN ensembles, lies in the use of ad-hoc ensem-
ble combination schemes (including the flexible context-aware ensem-
ble_moe, ensemble_feature, ensemble_stack), in the place of usual weighted
averaging/voting mechanisms and their drift-adaptive variants [6,7].

As also summarized in Tables 1 and 2, these additional capabilities
of our approach allow it advance the state of the art in the field.

Besides allowing us to assess the feasibility and validity of our
idea of hybridizing chunk-wise ensemble learning and deep learning
methods, the experimental findings discussed in this paper made us
confident in the fact that our work can act as a methodological basis for
developing effective, versatile, robust and scalable enough intelligent
systems for the analysis of streaming NIDSs logs.
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Table A.11
Results obtained by our approach and the baseline in a simulated incremental train-
and-test setting. Two scenarios have been considered, which correspond to using either
two (𝑏 = 2) or eight (𝑏 = 12) chunks to initialize the intrusion detection models
tested.

Model 𝑏 F1 AUC AUC-PR

ensemble_moe 2 0.807 0.966 0.801
b-DNN 2 0.657 0.939 0.803
ensemble_moe 12 0.855 0.996 0.820
b-DNN 12 0.660 0.938 0.793

7.3. Future work

In order to move further along the path of turning our DNN en-
semble classification framework into a fully-fledged solution for con-
tinuously analyzing real NIDSs log streams, we plan to pursue several
directions of research in the future.

Future investigation will concern, in particular, the integration and
evaluation of methods for: (i) adaptively setting the data chunking
scheme; (ii) detecting (with the help of change/drift detection algo-
rithms), and handling actively, radical changes in global distribution
of the log data; (iii) pruning/selecting the base classifiers in a way
that the ensemble is made keep a diverse and representative enough
collection of models. Solutions developed in the area of ensemble-
based stream analysis (including advanced chunk-based approaches
to non-stationary learning) [3] offer a solid basis for this research.
However, these solutions need to be adapted to peculiarities of our
classification setting, especially as concerns the specialized nature of
the base classifiers (owing to the restricted coverage of the population
of the attacks that is likely to be provided by the data chunks).

Moreover, we will investigate on extending our approach with semi-
supervised learning or transfer learning mechanisms, in order to also
possibly exploit the (typically vast amounts of) unlabeled data occur-
ring in NIDSs’ logs. However, such an extension should be conceived in
a careful way, balancing the opportunity of obtaining useful knowledge
from such data with the need for keeping the approach computationally
cheap enough for an online stream analysis scenario.

We will also investigate defining and evaluating more powerful
DNN architectures for the base models, such as sequence-oriented ones
(including, e.g., RNN, CNN or Transformer -based sub-nets), while pay-
ing attention to the higher risks of overfitting and/or slow-convergence
that may arise in such a case. By the way, the choice of using classifiers
reasoning a flat representation of network connections (which is indeed
quite common in the literature of NIDSs) stemmed from our desire to al-
low for a fair comparison of our approach with public implementations
of state-of-the-art incremental ensemble learning algorithms.

Clearly, our classification-based approach is likely to miss ‘‘zero-
day’’ attacks that diverge substantially from the discovered intrusion
patterns. This limitation is shared with the very many other super-
vised/discriminative learning techniques that have been appearing in
the field of IDSs, which are usually complemented with anomaly de-
tection tools in practical application scenarios. In this respect, an inter-
esting direction of research would consist in allowing our framework to
also include one-class classifiers (possibly based on deep auto-encoder
architectures) in the ensemble, while possibly re-designing the logics
of the combiner sub-net. Notably, considering the ability of one-class
learning methods to perform well in highly-unbalanced two-class clas-
sification settings, one could even explore the extreme scenario where
the ensemble is made of one-class classifiers only.
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Appendix. Tests on the incremental classification of a simulated
data stream

In order to study the proposed framework in a ‘‘lifelong’’ intrusion
detection mode, we carried out some additional tests over a simulated
stream of network traffic data. In order to make the study as realistic as
possible, we started from data instances really stored in the one-week
dataset CICIDS, and simulated a scenario where these instances spread
over the time forming a three-week data stream.

To this end, after discarding the portion of data gathered for Mon-
day (containing only normal traffic data) to further stress the detection
ability of our approach, we randomly split (the data related to) each
remaining day into 9 equally-sized subsets, as shown in Fig. A.7.

Let us denote as 𝐷𝑖
𝑗 the 𝑗th subset sampled from day 𝐷𝑖, for 𝑖 =

1,… , 4 –such that 𝐷1, 𝐷2, 𝐷3 and 𝐷4 refers to the data of Tuesday,
Wednesday, Thursday and Friday, respectively.

To simulate both an alternate occurrence of different attack bursts
and medium-range recurring behaviors, we tested our approach over
the following sequence of subsets: 𝐷1
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he data concerning the first, second, and third week of the simulated
ata stream, respectively.

Hereinafter, let us rename these data sets as 𝐶1, 𝐶2,… , 𝐶36, respec-
ively, for the sake of readability only.

We simulated an incremental application of our approach over this
ata stream, using each data set 𝐶𝑖 of it as a separate data chunk, while
ixing the maximal size of the ensemble to 𝑘 = 12 (i.e. the ensemble is
llowed to use only the latest twelve models as shown), in order to
ut a (quite strict) limit to its memory capacity. In particular, we first
nitialized the ensemble model with the former 𝑏 ≤ 12 chunks 𝐶1,… , 𝐶8
so obtaining a ‘‘bootstrap’’ version of the ensemble, containing only

classifiers), and then used the remaining chunks to incrementally
pdate and test the ensemble. A pictorial representation of the incre-
ental application of our approach over the simulated data stream is

hown in Fig. A.8.
More precisely, the ensemble model trained on 𝐶1,… , 𝐶8 was tested

n 𝐶9, while the updated version of the ensemble obtained after pro-
essing 𝐶𝑞 (trained incrementally over 𝐶𝑞−12+1,… , 𝐶𝑞) was tested on
1+1, for 𝑞 = 𝑏 + 1,… , 35.

In order to have a term of comparison, we also tested a baseline
ethod (denoted as b-DNN) training and testing incrementally a single
NN classifier with the same architecture as our base models. The
NN classifier induced this way, from the same data stream as for our
pproach, is meant to mimic the standard procedure used to adapt
neural-network classifier (like those used by most of the current

L-based approaches to IDS) to work with streaming data.
Table A.11 shows the average results obtained by both our approach
nd the baseline in two variants of the simulation scenario, which
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Fig. A.7. Split of days in 9 equally-sized subsets each.
Fig. A.8. Simulation of an incremental application of our approach over the data stream extracted from dataset CICIDS.
iffers for the number of chunks employed to initialize the intrusion
etection model: 𝑏 = 2 and 𝑏 = 12.

By looking at the table, it is easy to see that the proposed ensemble-
based approach outperforms the baseline (especially in terms of both F1
and AUC), in both cases. As expected, the performances of our approach
neatly benefit from using more chunks (𝑏 = 12, rather than 𝑏 = 2)
o initialize the ensemble (so allowing it to acquire information on a
ider population of attack patterns), while such an improvement is not
bserved for the purely incremental DNN classifier.

Notice that the worse achievements of our model in the case 𝑏 = 2
trongly depend on the fact that, in the remaining part of the first
eek of simulation, it was called for detecting attack modalities that it
ever saw before. Anyway, the behavior of our approach looks pretty
atisfactory, even in such a challenging test setting.6

In our opinion, these results offers some more evidence for the
apability of our approach to deal with highly changing behaviors. A
ore extensive and deeper experimental evaluation of our approach in

n online setting is left to future work.
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