
An Adaptive Distributed Ensemble Approach
to Mine Concept-drifting Data Streams

Gianluigi Folino, Clara Pizzuti, Giandomenico Spezzano
ICAR-CNR

Via Pietro Bucci, 41C
87036 Rende (CS), Italy

{folino,pizzuti,spezzano}@icar.cnr.it

Abstract

An adaptive boosting ensemble algorithm for classifying
homogeneous distributed data streams is presented. The
method builds an ensemble of classifiers by using Genetic
Programming (GP) to inductively generate decision trees,
each trained on different parts of the distributed training
set. The approach adopts a co-evolutionary platform to sup-
port a cooperative model of GP. A change detection strat-
egy, based on self-similarity of the ensemble behavior, and
measured by its fractal dimension, permits to capture time-
evolving trends and patterns in the stream, and to reveal
changes in evolving data streams. The approach tracks on-
line ensemble accuracy deviation over time and decides to
recompute the ensemble if the deviation has exceeded a pre-
specified threshold. This allows the maintenance of an ac-
curate and up-to-date ensemble of classifiers for continuous
flows of data with concept drifts. Experimental results on a
real life data set show the validity of the approach.

1. Introduction

In recent years, many organizations are collecting
tremendous amount of data, often generated continuously as
a sequence of events and coming from different locations.
Credit card transactional flows, telephone records, sensor
network data, network event logs are just some examples
of data streams. The design and development of fast, ef-
ficient, and accurate techniques, able to extract knowledge
from these huge data sets too large to fit into the main mem-
ory of computers, poses significant challenges. In fact, tra-
ditional approaches assume that data is static, i.e. a concept,
represented by a set of features, does not change because
of modifications of the external environment. In the above
mentioned applications, instead, a concept may drift due to
several motivations, for example sensor failures, increases

of telephone or network traffic. Concept drift can cause se-
rious deterioration of the performance. In such a case the
adopted method should be able to adjust quickly to chang-
ing conditions. Furthermore, data that arrives in the form
of continuous streams usually is not stored, rather it is pro-
cessed as soon as it arrives and discarded right away.

Incremental or online methods [6, 17] are an approach to
large-scale classification on evolving data streams. These
methods build a single model that represents the entire data
stream and continuously refine this model as data flows.
They are not able to capture new trends in the stream and
might preclude that valuable older information be used
since it is discarded as new one arrives. In the last few
years, in the data mining community, approaches to pro-
cessing data streams through classifier ensembles have been
gaining an increasing interest. Many different proposals are
described in [16, 18, 3, 4, 9, 15]. A survey on the most
recent research topics can be found in [2]. However, the
above approaches are not capable to deal with distributed
streams. If data comes from different locations, it is neces-
sary to gather all the data on a single location before pro-
cessing. In many cases the cost of centralizing the data can
be prohibitive and the owners may have privacy constraints.
In [8], a method for aggregating decision trees built at dis-
tributed sites is presented. As noted in [13], this approach
could be able to process distributed data streams if endowed
with a streaming decision tree construction.

In this paper we approach the problem of large-scale
distributed streaming classification by building an adaptive
boosting ensemble of classifiers that combine the results
of models trained on nodes of a distributed network, each
containing its own local streaming data. The learned local
models are obtained by using Genetic Programming (GP )
[10], that inductively generate decision trees trained on dif-
ferent parts of the distributed training set. The method,
namedStreamGP, assumes that data is distributed, non-
stationary, i.e. a concepts may drift, and arrives in the



form of multiple streams.StreamGPadopts a distributed
co-evolutionary platform to support a cooperative model of
GP. It evolves multiple predictors in the form of coopera-
tive sub-populations and exploits the inherent parallelism
of GP by sharing the computational workload among com-
puters over the network.

StreamGPis enriched with a change detection strategy
that permits to capture time-evolving trends and patterns in
the stream, and to reveal changes in evolving data streams.
The strategy evaluates online accuracy deviation over time
and decides to recompute the ensemble if the deviation has
exceeded a pre-specified threshold. It is based on self-
similarity of the ensemble behavior, measured by its fractal
dimension, and allows revising the ensemble by promptly
restoring classification accuracy. The method is efficient for
two main reasons. First, each node of the network works
with its local data, and communicate only the local model
computed with the other peer-nodes to obtain the results.
Second, once the ensemble has been built, it is used to pre-
dict the class membership of new streams of data and up-
dated only when concept drift is detected. This means that
each data block is scanned at most twice. The first time
to predict the class label of the examples contained in that
block. The second scan is executed only if the ensemble ac-
curacy on that block is sensibly below the value obtained so
far. In such a case, theStreamGPalgorithm is executed to
obtain a new set of classifiers to update the ensemble. Ex-
perimental results on a real life data set show the validity of
the approach in maintaining an accurate and up-to-date GP
ensemble.

The paper is organized as follows. The next section de-
scribes the fractal dimension concept. Section 3 describes
the algorithm. In section 4, finally, the results of the method
on a real life data set are presented.

2. Concept drift detection

The detection of changes in data streams is known to be a
difficult task. When no information about the data distribu-
tion is available, an approach to cope with this problem is to
monitor the performance of the algorithm by using the clas-
sification accuracy as a performance measure. The decaying
of the predictive accuracy below a predefined threshold can
be interpreted as a signal of concept drift. In such a case,
however, the threshold must be tailored for the particular
data set [19], since intrinsic accuracy can depends on back-
ground data. Furthermore, a naive test on accuracy does not
take into account if the decrease is meaningful with respect
to the the past history. We propose to track ensemble behav-
ior by means of the concept of fractal dimension computed
on the set of the most recent accuracy results.

Fractals [12] are particular structures that presentself-
similarity, i. e. an invariance with respect to the scale used.

Many data sets, though are not fractals, exhibit a fractal
behavior, that is they are self-similar over a large range of
scales or size. This means that parts of any size of the data
are similar to the whole data set. Examples of self-similar
data sets come from different application domains such as
economic markets, network and web site traffics, biology,
geophysics, communication systems. Self-similarity can be
measured using thefractal dimension. Intuitively, the frac-
tal dimension measures the number of dimensions filled by
the objects represented by the data set. It can be computed
by embedding the data set in ad-dimensional grid whose
cells have sizer and computing the frequencypi with which
data points fall in thei-th cell. The fractal dimensionD [7]
is given by the formula

Dq =

{

∂log
∑

i
pilogpi

∂log r
for q=1

∂log
∑

i
p

q

i

∂log r
otherwise

Among the fractal dimensions, theHausdorff fractal di-
mension(q=0), theInformation Dimension(q=1), andCor-
relation dimension(q=2) are the most used. The Informa-
tion and Correlation dimensions are particularly interesting
for data mining because the numerator ofD1 is the Shan-
non’s entropy, andD2 measures the probability that two
points chosen at random will be within a certain distance of
each other. Changes in the Information and Correlation di-
mensions mean changes in the entropy and the distribution
of data, thus they can be used as an indicator of changes in
data trends. Fast algorithms exist to compute the fractal di-
mension.The most known is theFD3 algorithm of [14] that
implements thebox counting method[11]. In the next sec-
tion, a description of the ensemble GP algorithm for stream-
ing data is given and the application of the fractal dimension
to capture time-evolving trends in the stream is explained.

3. The StreamGP algorithm for streaming data

StreamGPis an ensemble GP boosting learning algo-
rithm extended to deal with the classification of distributed
continuous flows of data with concept drift. Figure 1 illus-
trates the ideas adopted byStreamGPto this end.

We assume a scenario where each node of the network
receives continuous new data over time in batches. These
batches (or blocks) contains labelled and unlabelled data.
Labelled data are used by the learning system to train the
ensemble and to update it when changes in data are discov-
ered. Once the ensembleE has been built, by running the
boosting method on a number of blocks, it can be used to
predict the class of the unlabelled data. As new data flows
in, the adaptiveStreamGPexploits the new training data
to discover if concept drift has been occurred. In such a
case it trains new classifiers, adds them to the GP ensem-
ble by adopting a FIFO strategy that preserves the most



Figure 1. GP ensemble with FD-meter

recently generated classifiers and discards the older ones.
Let E = {C1, . . . , CM} be the fixed ensemble size built so
far. As data comes in, the ensemble prediction is evaluated
on these new chunks of training data, and augmented mis-
classification errors, due to changes, are detected by using
the moduleFD-meter. Suppose we have already scanned
k − 1 blocksB1, . . . , Bk−1 and computed the fitness val-
ues{f1, . . . , fk−1} of the ensemble on each block. Let
F = {f1, . . . , fH} be the fitness values computed on the
most recentH blocks, andFd(F ) be the fractal dimension
of F . When the blockBk is examined, letfk be the fit-
ness value of the GP ensemble on it, andF ′ = F ∪ {fk}.
FD-meter then checks whether| (Fd(F ) − Fd(F

′) |> τ)
whereτ is a fixed threshold. In such a case the fractal di-
mension shows a variation and an alarm of change is set.
This means that data distribution has been changed and the
ensemble classification accuracy drops down. In the next
section we experimentally show that this approach is very
effective for the algorithm that is able to quickly adjust to
changing conditions.

A detailed description of the algorithm in pseudo-code is
shown in figure 2. Let a network ofp nodes be given, each
having a streaming data set. SupposeE = {C1, . . . , CM}
(step 1) is the ensemble stored so far andF = {f1, . . . , fH}
(step 2) be the fitness values computed on the most recentH

blocks. As data continuously flows in, it is broken in blocks
of the same sizen. Every time a new blockBk of data is
scanned, the ensembleE is evaluated onBk and the fitness
value obtainedfk is stored in the setF ′ (steps 5-7).

Let Fd(F ) be the fractal dimension ofF and Fd(F
′)

the fractal dimension ofF augmented with the new fitness
valuefk obtained on the blockBk (step 8). If it happens
that | (Fd(F ) − Fd(F

′) |> τ) (step 9), whereτ is a fixed

Algorithm StreamGP: maintaining a GP ensembleE
Given a network constituted byp nodes,
each having a streaming data setSi

1. E = {C1, . . . , CM}
2. F = {f1, . . . , fH}
3. for j = 1 . . . p (each node in parallel)
4. while (moreBlocks)
5. Given a new blockBk = {(x1, y1), . . . (xn, yn)}, xi ∈ X

with labelsyi ∈ Y = {1, 2, . . . , d}
6. evaluate the ensembleE onBk and

let fk be the fitness value obtained
7. F ′ = F ∪ fk

8. compute the fractal dimensionFd(F
′) of the setF ′

9. if | (Fd(F ) − Fd(F
′) |> τ)

10. Initialize the subpopulationQi

with random individuals
11. Initialize the example weightswi = 1

n
for i = 1, . . . , n

12. for t = 1, 2, 3, . . . , T (for each round of boosting)
13. TrainCGPC on the blockBk using a weighted

fitness according to the distributionwi

14. Learn a new classifierCj
t

15. Exchange thep classifiersC1

t , . . . , C
p
t

obtained among thep processors
16. Update the weights
17. E = E ∪ {C1

t , . . . , C
p
1
}

18. end for
19. Update E by retiring the oldest classifiers
until | E |< M

20.end if
21. end while
22. end parallel for

Figure 2. The StreamGP algorithm

threshold, then a change is detected, and the ensemble must
adapt to these changes by retraining on the new blockBk.
To this end the boosting standard method is executed for
a numberT of rounds (steps 10-18). For every nodeNi,
i = 1, . . . , p of the network, a subpopulationQi is initial-
ized with random individuals (step 10) and the weights of
the training instances are set to 1/n, wheren is the data
block size (step 11). Each subpopulationQi is evolved for
T generations and trained on its local blockBk by running a
copy of theCGPC algorithm (a cellular genetic program-
ming method that generates a classifier as a decision tree)
[5] (step 13). Then thep individuals coming from each sub-
population (step 14) are exchanged among thep nodes and
constitute the ensemble of predictors used to determine the
weights of the examples for the next round (steps 15-17). If
the size of the ensemble is more than the maximum fixed



50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of blocks

A
cc

u
ra

cy
/F

ra
ct

a
l d

im
e

n
si

o
n

Accuracy
Fractal Dimension

Figure 3. Accuracy and fractal dimension val-
ues with ensemble size 100 and τ = 0.005 .

sizeM , the ensemble is updated by retiring the oldestT ×p

predictors and adding the new generated ones (step 19).

4. Experimental Results

In this section we study the effectiveness of our ap-
proach on a real-life application. The experiments were per-
formed using a network composed by 5 1.133 Ghz Pentium
III nodes having 2 Gbytes of Memory, interconnected over
high-speed LAN connections.

To this end we used the KDD Cup 1999 Data set [1].
This data set comes from the 1998 DARPA Intrusion De-
tection Evaluation Data and contains training data consist-
ing of 7 weeks of network-based intrusions inserted in the
normal data, and 2 weeks of network-based intrusions and
normal data for a total of 4,999,000 connection records de-
scribed by 41 characteristics. The main categories of in-
trusions are four: Dos (Denial Of Service), R2L (unau-
thorized access from a remote machine), U2R (unautho-
rized access to a local super-user privileges by a local un-
privileged user), PROBING (surveillance and probing). For
the experiment we divided the data set in blocks of size 1k.
On each node the algorithm receives a stream of 500 blocks,
thus processing 500k tuples. Figure 3 shows the classifica-
tion accuracy and the value of the fractal dimension when
an ensemble of size 50 is used, withτ = 0.005. The fig-
ure points out the abrupt alteration of accuracy because of
the sudden change of the class distribution of the incom-
ing data and the ability of the algorithm to quickly adapt to
these new conditions.

Figure 4 shows the classification accuracy of the algo-
rithm for an increasing number of tuples, when different

Figure 4. Classification accuracy for different
ensemble sizes.

ensemble sizes are used, namely 25, 50, 100, and 200 clas-
sifiers (cls stands for classifiers). Tuples are expressed in
millions, thus 0.5 means 500,000 tuples, 1.0 one million of
tuples, and so on until 2,500,000 tuples. For this data set in-
creasing the size of the ensemble produces improvements in
classification accuracy too, though the difference between
100 and 200 classifiers is minimal. Furthermore, the per-
centage of blocks on which the ensemble has to retrain
because of change detection is 21.82%, 19.79%, 17.28%,
17.08% respectively for ensemble size 25, 50, 100, 200.

Finally we wanted to compare the performance of the al-
gorithm against the simple one-pass algorithm that receives
the entire data set at once. To this end we runStreamGP
with an ensemble size of 50 and simulated the one-pass
boosting method by using the entire data set scanned so
far as a unique block. However, since the boosting rounds
are 5, on 5 nodes, the ensemble generated by the one-pass
method contains 25 classifiers. In order to have a fair com-
parison, the one-pass method had to run for 10 rounds so
as to generate 50 classifiers. Figure 5 shows the classifica-
tion accuracy for an increasing number of tuples, expressed
in millions. The figure points out the better performance of
the streaming approach. Another advantage to make clear is
that the streaming method works on 1k tuples at a time, dis-
carding them as soon as they have been processed. On the
contrary, the one-pass method must maintain the entire data
set considered so far, with considerable storage and time
requirements. For example the one-pass boosting method
working on a data set of 2,500,000 tuples needs 45280 sec-
onds, whileStreamGP, with τ = 0.01, requires 7186 sec-
onds, which is almost a magnitude order less.



Figure 5. Accuracy comparison between
StreamGP and one-pass boosting method.

5. Conclusions

The paper presented an adaptive GP boosting ensemble
method for the classification of distributed homogeneous
streaming data that comes from multiple locations. The
main novelty of the approach are the extension of GP en-
sembles to deal with streaming data and the ability to handle
concept drift via change detection. The approach is efficient
since each node of the network works with its local stream-
ing data, and communicate only the local model computed
with the other peer-nodes. Furthermore, once the ensemble
has been built, it is used to predict the class membership of
new streams of data until concept drift is detected. Only in
such a case the algorithm is executed to generate a new set
of classifiers to update the current ensemble. Experimental
results showed the validity of the approach in maintaining
an accurate and up-to-date GP ensemble.

Acknowledgements. This work has been partially sup-
ported by the LOGICA project funded by Regione Calabria
(Programma Operativo Regionale POR, Misura 3.16.B2).

References

[1] The third international knowledge discovery and data
mining tools competition dataset kdd99-cup. In
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,
1999.

[2] C. C. Aggarwal. Data Streams : Models and Algorithms.
Springer, 2007.

[3] F. Chu and C. Zaniolo. Fast and light boosting for adap-
tive mining of data streams. In H. Dai, R. Srikant, and

C. Zhang, editors,Proceedings of the 8th Pacific-Asia Con-
ference (PAKDD 2004), May 26-28, 2004, Proceedings, vol-
ume 3056 ofLNAI, pages 282–292, Sydney, Australia, 2004.
Springer Verlag.

[4] W. Fan. Systematic data selection to mine concept-drifting
data streams. InProceedings of the 10th ACM SIGKDD Int.
Conf. on Knowledge discovery and data mining (KDD’04),,
pages 128–137, Seattle, WA, USA, 2004. ACM.

[5] G. Folino, C. Pizzuti, and G. Spezzano. Ensembles for large
scale data classification.IEEE Transaction on Evolutionary
Computation, 10(5):604–616, October 2006.

[6] J. Gehrke, V. Ganti, R. Ramakrishnan, and W. Loh. Boat -
optimistic decision tree construction. InProceedings of the
ACM SIGMOD International Conference on Management of
Data (SIGMOD’99), pages 169–180. ACM Press, 1999.

[7] P. Grassberger. Generalized dimensions of strange attrac-
tors. Physics Letters, 97A:227–230, 1983.

[8] H. Kargupta and B.-H. Park. A fourier spectrum-based ap-
proach to represent decision trees for mining data streams in
mobile environments.IEEE Transaction on Knowledge and
Data Engineering, 16(2):216–229, 2004.

[9] J. Z. Kolter and M. A. Maloof. Using additive expert ensem-
bles to cope with concept drift. InProceedings of the 22nd
Int. Conference on Machine Learning (ICML’05), pages
449–456, 2005.

[10] J. R. Koza. Genetic Programming: On the Programming
of Computers by means of Natural Selection. MIT Press,
Cambridge, MA, 1992.

[11] L. Liebovitch and T. Toth. A fast algorithm to deter-
mine fractal dimensions by box counting.Physics Letters,
141A(8):–, 1989.

[12] B. Mandelbrot.The Fractal Geometry of Nature. W.H Free-
man, New York, 1983.

[13] S. Parthasarathy, A. Ghoting, and M. E. Otey. A survey of
distributed mining of data streams. In C. C. Aggarwal, ed-
itor, in Data Streams : Models and Algorithms, pages 289–
307. Springer, 2007.

[14] J. Sarraille and P. DiFalco. FD3.
http://tori.postech.ac.kr/softwares.

[15] M. Scholz and R. Klinkenberg. Boosting classifiers for drift-
ing concepts.Intelligent Data Analysis, 11(1):3–28, 2007.

[16] W. N. Street and Y. Kim. A streaming ensemble algorithm
(sea) for large-scale classification. InProceedings of the sev-
enth ACM SIGKDD International conference on Knowledge
discovery and data mining (KDD’01),, pages 377–382, San
Francisco, CA, USA, August 26-29, 2001 2001. ACM.

[17] P. E. Utgoff. Incremental induction of decision trees.Ma-
chine Learning, 4:161–186, 1989.

[18] H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-
drifting data streams using ensemble classifiers. InProceed-
ings of the nineth ACM SIGKDD International conference
on Knowledge discovery and data mining (KDD’03), pages
226–235, Washington, DC, USA, August 24-27, 2003 2003.
ACM.

[19] G. Widmer and M. Kubat. Learning in presence of concept
drift and hidden contexts.Machine Learning, (23):69–101,
1996.


