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Abstract

This paper describes our research effort to employ Grid technologies to enable
the development of geoscience applications by integrating workflow technologies
with data mining resources and a portal framework in unique work environment
called MOSE. Using MOSE, a user can easily compose and execute geo-workflows
for analyzing and managing natural disasters such as landslides, earthquakes, floods,
wildfires, etc.. MOSE is designed to be applicable both for the implementation of
responses strategies when emergencies occur and for disaster prevention. It takes ad-
vantage of the standardized resource access and workflow support for loosely coupled
software components provided by web/grid services technologies. The integration of
workflows with data mining services significantly improves data analysis. Geospatial
data management and mining are critical areas of modern-day geosciences research.
An important challenge for geospatial information mining is the distributed nature
of the data. MOSE provides knowledge discovery services based on the WEKA data
mining library and novel distributed data mining algorithms for spatial data anal-
ysis. A P2P bio-inspired algorithm for distributed spatial clustering as an example
of distributed knowledge discovery service for intensive data analysis is presented.
A real case application for the analysis of landslide hazard areas in the Campania
Region near the Sarno area shows the advantages of using the portal.
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1 Introduction

Natural disasters, such as volcanic eruptions, earthquakes, landslides, hurri-
canes, floods, wildfires, droughts, and tornadoes are complex physical phenom-
ena that may cause extensive damage to property and the economy and pose
a significant risk of loss of human life. Grid technologies provide an unifying
infrastructure to share capabilities, to integrate services and resources, and to
develop active collaborations across distributed, multi-organizational environ-
ments. Grids can be considered to be a crucial enabling technology for disaster
prevention and the implementation of responses strategies when emergencies
do occur. Grids can help the decision making process for natural disasters such
as floods, landslides and earthquakes, predicting their spread and progression
as accurately as possible. The ability of Grids to address effectively emergency
operations is that to combine into a single cooperating system wireless sensor
networks, geospatial data, modeling and simulation capabilities, parameter
estimation methods, spatial data mining tools and visualization applications.
For example, Grids can coordinate computations composed of a tridimensional
elevation model combined with simulation of earthquakes, to assist with disas-
ter prevention and mitigation by creating hazard map for evacuation planning.
A similar thing can be done for landslides, combining high-resolution elevation
data with large-scale computer simulation to create an early warning system
for evacuation.

Geospatial information is essential for quick and effective response during
disaster and emergency situations. Typically, geospatial data contain a huge
amount of geometric or topological information, maps and repositories of
remote-sensing images. Data is often inherently distributed into several datasets,
making a centralized processing of this data very inefficient. Data mining tech-
niques can be applied to geospatial data to extract knowledge for geoscience
applications. For example, the spatial prediction of landslide hazards is one
important field of geoscientific research in which classification rules have been
successfully applied [7]. The aim of these methods is to identify areas that
are susceptible to future landsliding, based on the knowledge of past land-
slide events and terrain parameters, geological attributes, etc.. and possibly
considering anthropogenic environmental conditions associated with the pres-
ence or absence of such phenomena. As geospatial data sets are large and the
data mining tasks to perform are quite complex, it is important to define novel
efficient data mining algorithms that are suitable to discovery meaningful pat-
terns in order to answer scientific questions and facilitate the understanding of
phenomenon. Speeding up the execution of data mining tasks, and scaling the
algorithms to run for large data sets is one of the most important problems in
data mining research.



This paper presents the MOSE! (Spatio-Temporal M Odelling of Environmen-
tal Evolutionary Processes by means of GeoSErvices) system, a Grid-based
problem solving environment (PSE) for the developing of geoscience applica-
tions. MOSE is a PSE able to support the activities that concern the modelling
and simulation and mining of spatio-temporal phenomena for analyzing and
managing the identification and the mitigation of natural disasters like floods,
wildfires, landslides etc. The activities managed by MOSE are characterized
by the need to handle large amounts of spatio-temporal data and to support
the interoperability among simulation models, distributed GIS, visualization
systems, parameter estimation services, discovery of spatio-temporal patterns
in pre-existing data, etc. In this domain, the data conversion and the access,
search, discovery and organization processes are complex problems because
data are geo-referenced, stored in distributed GIS and can be used along three
dimensions: temporal, spatial and referred to the physical properties.

MOSE uses a Grid service-based computing portal architecture to coordi-
nate the access to the resources. Workflow technology is used to compose the
services. The main components of MOSE are simulation services, geographic
information (GI) services, knowledge discovery services (KDS), visualization
services, geographic data and repositories. MOSE enables the creation, execu-
tion and monitoring of geo-workflows in grid environments through high-level,
graphical Web interfaces. Components of the workflows can be sequential, par-
allel and P2P applications. Each component is wrapped as Web/Grid Service
for exploiting the potentialities of this architecture. Each Web service is se-
mantically annotated and, consequently, domain specific ontologies support
the user in building complex workflows, even without a deep knowledge of the
domain itself.

MOSE provides web based access to the spatial data by a browser and al-
lows data to be observed and manipulated in a 2D /3D space by selecting
regions in thematic maps. Natural phenomena can be modeled by cellular au-
tomata (CA) models and simulated by a parallel Grid service based on the
CAMELotGrid environment [16]. MOSE provides KDS based on the WEKA
(Waikato Environment for Knowledge Analysis) data mining library and novel
distributed data mining algorithms for spatial data analysis. Distributed data
intensive mining algorithms are necessary to discovery spatial patterns from
large geospatial datasets. Novel algorithms must be developed to accomplish
this task efficiently. We present an example of innovative KDS based on a
bio-inspired P2P agent-based algorithm for clustering distributed intensive
geospatial data. The algorithm was implemented using the JXTA platform
and then wrapped as a Web Service and integrated in the MOSE environ-
ment.

! http://www.icar.cnr.it/mose



A first prototype of MOSE, available at the URL http://wwuw.icar.cnr.it/mose,
was successfully applied for the analysis of landslide hazard areas in the Cam-
pania Region near the Sarno area [13]. In this scenario, the main actor is
a disaster manager who wants to get an overview of the Sarno area with the
indication of the regions which are currently slid down and those which are sus-
ceptible to sliding down (landslide hazard areas) within a fixed time. For each
scenario, the disaster manager generates a geo-workflow that orchestrates the
web services necessary to obtain the outcome, and submitted it to the MOSE
workflow enactment engine, which takes care of its execution.

Note that some of the components that constitute the MOSE system use
results of previous research developed in the past years and guarantee high
performance and accuracy of the results [19].

The paper is organized as follows: section 2 presents the the MOSE system
and its architecture; section 3 shows an example of the building of a workflow;
section 4 gives an overview of the distributed knowledge service approach;
section 5 illustrates a distributed knowledge service that enables the mining
of geographically dispersed sites by means of a distributed multi-agent spatial
clustering algorithm; section 6 show a real application scenario in which the
distributed knowledge service and other grid services are combined to carry
out an application for the analysis of landslide hazard areas in the Campania
Region. Section 7 reviews some related works; finally, conclusions are draw in
section 8.

2 MOSE: a Grid Portal for geoscience applications

MOSE is a framework supporting the development, execution and manage-
ment of complex geo-models. It provides a friendly environment that symbiot-
ically combine computations, experiments, observations and geo-spatial data
and provide important insights into complex phenomena. MOSE can deliver
complex grid-based solutions of geoscience problems to users wherever they
have access to a web browser running on the Internet without the need to
download or install specialized software or worry about setting up networks,
firewall, and port policies.

The framework provides a very flexible service-oriented programming envi-
ronment to design and construct large scale and computationally-intensive
geoscience applications based on existing web/grid services technologies and
standards. Remote services are visible to the users through a Web browser por-
tal that is used to configure, launch and monitoring complex geo-workflows
that combine services that communicate one another via well-defined interface
and protocols. In MOSE the geo-workflows are tools for designing and con-



ducting computational experiments. Scientists need to be able to run analysis
processes on collected data. Often these analysis processes are single com-
putations and often they are complex composed scenarios of preprocessing,
analysis, post processing and visualization. Furthermore, these experimental
geo-workflows are often repeated hundreds of times with slightly different pa-
rameter settings or input data.

A critical feature of any e-Science portal is the capability to compose work-
flows, to add new computational analysis programs to a catalog of workflow
components and a simple way to run the workflows with the results auto-
matically stored in the user’s private data space. MOSE provides a Web GUI
to support easy problem set-up and data input using service classification by
domain-dependent ontological annotation.

The MOSE Grid portal employs a service-oriented architecture and is built
on the layer of OGSA (Open Grid Services Architecture) middleware.
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Fig. 1. The MOSE software architecture.

The architecture, shown in figure 1, includes some components exported as
web/grid services, each with an associated repository preserving historical (or
previously inserted) information, a workflow executor and Web-based access
to a Geographical Information System (GIS). These services are accessed and
composed by the users though the Grid Portal that contains an interface to
configure, launch and monitor complex service-oriented applications such as
geo-workflows for conducting experiments or other scientific investigations.



Geo-workflows greatly simplify the process of conducting geophysical analyses
and forecasts. In MOSE, the experiments are organized as a process that
represents the automation of a sequence of interactions with a set of Web
Services. New experiments can be based on existing geo-workflows or created
from scratch. While the workflow runs, it notifies the user of the status.

A Web based interface, shown in figure 2, is used to access the services offered
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Fig. 2. MOSE Web based GUI.

The Grid-based portal supplies access to the spatial data by the client browser
and allows observing, selecting, and manipulating data in a 2D/3D space
selecting regions in thematic maps.

Users can examine features and patterns in a map in order to identify the
region from which data must be extracted and/or analyzed. A landslide hazard
area for the Sarno area is shown in figure 3.

The main components exported as web/grid services are:

e Data extractor component, to extract raster maps from the GIS.

e CAMELotGrid [17], an autonomic cellular automata based simulation tool
running on the computational grid in a distributed way.

e Estimation of model parameters component, based on a parallel genetic
algorithm running on a parallel machine available on the Grid. The CA
models simulated with CAMELotGrid are calibrated with the parameters
that are estimated by this component.

e Visualization component, based on AVS-Express, to implement 2D /3D vi-
sualizations and virtual reality representations of one or more layers of the
data extracted from the GIS.
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Fig. 3. Landslide hazard area near Sarno.

e Knowledge discovery services both sequential, performing the main KDD
tasks as preparing and filtering data, classification and clustering, i.e. ex-
porting Weka algorithms as web services, and distributed, performing oper-
ations of spatial clustering, classification, etc. (better described in the next
subsection).

CA have been used as a simulation technique in the study of an impressively
wide range of spatial models. The integration of CA and GIS has demonstrated
considerable potential to design geo-models. Most current GIS techniques have
limitations in modeling changes in the landscape overtime. The limitations of
GIS include its poor ability to handle dynamic spatial models. CA can serve
as an analytical engine to provide flexible framework for the programming and
running of dynamic spatial models weather a grid of data (raster) extracted
from a GIS is provided as input to the CA.

In MOSE geospatial data and geospatial data processing functions are all
wrapped as GIS Web services. CAMELotGrid is apt to simulate many
complex real world geo-hazard CA models such as landslide evolution, lava
flows, floods, etc. over heterogenous grid resources. For each phenomenon a
CA model must be defined and implemented by the CARPET programming
language [18]. CAMELotGrid exploits autonomic functionality to manage in-
telligently problem partitioning, problem piece deployment, runtime manage-
ment, dynamic level of parallelism and dynamic load balancing without any
user intervention. The system permits the definition of a set of rules to spec-
ify high level policies that capture different aspects of autonomic behavior,



i.e. to manage the runtime behavior of the system in the form of a event
condition-action (ECA) control structure [17].

Using CAMELotGrid as a Web service we can solve large-scale problems and
guarantee interoperability among different networked systems and specifically
CAMELotGrid-validate models. Furthermore, by the aggregation/composition
of two or more simulation Web services we can realize the distributed simu-
lation of coupled models that are characterized as being multi-scale, dynamic
and heterogeneous (in time space and state). Different coupled model can be
represented as geo-workflows where different simulation services are orches-
trated to built a hierarchical simulation model as a network of CA models.
New workflows can be designed and performed using apposite tools of the
framework to validate ideas and perform experiments. In this way, MOSE can
be used profitably to execute simulations of different complex natural phe-
nomena. New phenomena can be simulated by the specification of a new CA
model and its transfer as input parameter to the CAMELotGrid simulation
service.

It is very tedious to calculate the parameter values in conventional CA model.
So an estimation parameter service can be used to calibrate a CA designed to
simulate a geo-model. We use parallel genetic algorithms to find parameters
that fit observed data. Genetic algorithms are stochastic search methods that
search from a population of points and use simple operators modeled on nat-
ural selection to generate subsequent populations and make progress. These
simple operators work on string representations and individuals in the genetic
algorithm’s population are usually binary strings. Although randomized, ge-
netic search is guided by the relative differences in (application-dependent)
fitness of members of the population. Each member of the population repre-
sents a possible solution to the problem. Genetic algorithms maximize a fitness
function that for our problem is defined from difference between modeled and
observed data. Figure 4 depicts how the GA algorithms are used to calibrate
the CA model.
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Fig. 4. MOSE The calibration of the CA model with GAs.



Handling visualization services is another critical point for the system. In fact,
even the output of simple workflows could be hardly understood without an ad-
equate visualization. A lot of excellent visualization tools have been developed,
most of them have become popular. Integrating these software as Web service
into the system will promote usability and quicken development of the system.
In MOSE’ we are able to use visualization services based on the AVS/Express
toolkit [1]. In developing Web service versions of the AVS/express, we have
wrapped a batch version of the toolkit. The visualization service can be in-
voked passing a visualization model that will be applied on data to visualize.
Moreover, is possible to use Web services to convert AVS-based visualizations
into VRML (Virtual Reality Modeling Language) files to display 3D models
on the Web.

WS-BPEL (Web Service Business Process Execution Logic) [21], approved as
an OASIS Standard, was a result of the combined efforts of many companies
for supplying a standardized way to compose web services. For this reason,
the core part of our system, the Workflow Executor (WE), permits to build
workflows using this standard. In practice, the WE receives a workflow, built
using the BPEL Designer (an eclipse plugin for designing workflows) or chosen
among the available ones in the workflow repository, and executes it on the
Grid on the basis of the available resources.

Note that a repository is associated with each component to reuse models
previously defined or results obtained from the execution of geo-workflows.
CAMELotGrid maintains a repository of the models of simulations, the param-
eter estimation service retains the parameters estimated for different regions
for model calibration, the data extractor keeps data in the data repository, the
3D visualization component maintains a repository of 3D visualization mod-
els of its simulations and finally, the discovery knowledge components uses a
knowledge repository to save acquired knowledge.

The representation of data mining algorithms (DMA) as a service is an at-
tempt to build an infrastructure for DMA that allow users to concentrate on
what they want to accomplish rather than on how to solve all the technical de-
tails in tuning computing systems for executing DMA models. A Web services
based infrastructure delivers required data mining activities in a utility-like
fashion enabling heterogeneous components to cooperate in a unified manner.
MOSE uses the WEKA library wrapped as Web service to support local and
remote traditional data mining tasks, while adopts a more complex solutions
to support distributed data mining algorithms. As an example of this approach
we briefly illustrate, in section 5, the P-SPARROW clustering algorithm on a
P2P network using a JXTA platform.

As more geoscientists adopt the service-oriented paradigm, it is expected that
an increasing number of geoscience tools and services will be made accessible as



Web services. This would require that similar to data management practices,
Web services be also ontologically registered. Annotating web services with
semantics would ensure that appropriate tools (in form of Web services) are
selected in an efficient and automatic manner for answering geoscience queries.

3 Building a geo-workflow

The orchestration of web services is conducted in MOSE by means of BPEL
Designer, and the resultant geo-workflows are sent to the Workflow Executor
for the execution over the grid. To better understand the process of workflow

creation and orchestration, a simple but significant example, applicable in case
of landslide simulations will be illustrated.
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Fig. 5. Workflow building example using Bpel Designer.

A classical problem in model simulation is to verify whether a model cali-
brated on a region can be applied in other neighborhood regions with similar
physical properties. In the real case of landslide simulation, related to the zone
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of Sarno, we built a CA landslide model [10] and executed the simulation on
a region using the CAMELotGrid simulation service. Parameter estimation is
performed by the Web service workflow for the calibration based on parallel
genetic algorithms. To verify the landslide model is general enough, it is vali-
dated on the neighboring regions. In the case of low accuracy of the validation,
the model must be recalibrated.

- <process name="LandSlide" targetNamespace="http://acm.org/samples" suppressloinFailure="yes"
xmins:tns="http:/ /acm.org/samples" xmins="http:/ /schemas.xmlsoap.org/ws/ 2003 /03 /business-process/"
xmins:bpelx="http:/ /schemas.oracle.com/bpel /extension" xmins:ora="http: / /schemas.oracle.com/xpath/extension" >

+ <partnerLinks>
+ <variables>
- <sequence name="main">
<receive name="receiveInput" partnerLink="client" portType="tns:LandSlide" operation="process" variable="input"
createlnstance="yes" />
- <flow name="PARALLEL FLOW-1">
- <sequence name="FLOW-1-SEQUENCE-1">
- <flow name="PARALLEL FLOW-2">
- <sequence name="FLOW-2-SEQUENCE-1">
+ <assigh name="REGION 1 (R1)">
+ <invoke name="DATA EXTRACTOR">
+ <invoke name="PARAMETER ESTIMATOR" >
</sequence>
- <sequence name="FLOW-2-SEQUENCE-2">
+ <assign name="REGION 2 (R2)">
+ <invoke name="DATA EXTRACTOR">
</sequence>
</flow>
+ <assign name="PARAMETER (R1) DATA (R2)">
+ <invoke name="CAMELOT-GRID">
</sequence>
- <sequence name="FLOW-1-SEQUENCE-2">
+ <assign name="REGION 2">
+ <invoke name="LANDSLIDE EXTRACTOR">
</sequence>
</flow>
+ <invoke name="3D OVERLAP VISUALIZATOR">
<reply name="replyOutput" partnerLink="client" portType="tns:LandSlide" operation="process" variable="output" />
</sequence>
</process>

Fig. 6. An XML-Bpel code for workflow deployment.

The workflow of figure 5 illustrates how the validation phase for different
regions can be executed using MOSE by means of the BPEL Designer.

Yellow blocks represent assignation or composition of input parameters and/or
variables and blue blocks represent the invocation of a web service. Note that
on the bottom right corner of the BPEL Designer you can choose the various
components supplied by the MOSE environment. The components, exported
as web services, can be accessed by means of an UDDI browser, integrated
into the BPEL designer, listing all the services deployed on MOSE. Figure 6
shows the XML-Bpel code generated that MOSE uses for deployment.

In the following, more details on the entire process are given in order to give a
clearer understanding of the building of the geo-workflow. First, data raster are
extracted from a region (called regionl) and used by the parameter estimator
service workflow to define the parameters for the model calibration in that
region. In parallel, data are extracted from another region (called region2).
Then, the model simulation is executed using the CAMELotGrid service with
the parameters estimated for regionl but on the data of region2. In this way,
it is possible to verify whether the parameters extracted from the first region
are suitable for the second region. Moreover, still in parallel, data concerning
the real landslide shape from region2 are extracted from the GIS. Next, the
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overlap visualizer service is used to overlap the real and simulate landslide
shape. So, graphically, we can confirm (or not confirm) that the parameters
are also valid for other regions. Figure 7 shows the output of the workflow
with the real landslide delimited by the black line and gray area representing
the simulated one.

Fig. 7. Visualisation by means of the Overlap Visualizer of the workflow result.

4 Knowledge Discovery Services

The previous section showed the use of geo-workflows in a portal environment.
Now, we will describe how workflows integrated with data mining technologies
facilitate a more comprehensive understanding of the nature of a phenomenon.
Integrating data mining with workflows requires the development of KDS.

The KDS are built adopting the emerging Web Services Resource Frame-
work (WSRF) for accessing remote data mining algorithms and managing
distributed computations. WSRF was defined as a standard specification of
Grid services for providing interoperability with standard Web services so
building a bridge between the Grid and the Web. Traditional algorithms for
the main KDD tasks, as preparing and filtering data, classification and clus-
tering, taken from the WEKA system, can be used in MOSE. Naturally, all
of them are encapsulated in web/grid services.

In addition to WEKA-based data mining algorithms, distributed data mining
algorithms are necessary to discovery spatial patterns from large geospatial
datasets. In fact, in the case of geoscience applications, data are naturally
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distributed or can be profitably distributed along computing nodes in order
to reduce the execution times of data mining and simulation algorithms and
meet the requirements of real time applications. To this aim, MOSE supplies
distributed services of data mining that can be profitably applied when data
are placed in different sites on a network, especially in grid environment. These
services were developed using JXTA-J2SE libraries, the Java implementation
of JXTA protocols [4] that guarantee interoperability, platform independence
and ubiquity in P2P networks. Distributed mining algorithms developed us-
ing the JXTA platform are wrapped as Web services to implement distributed
KDS. JXTA-based algorithms are wrapped behind an XML shell which al-
lows individual functions within the programs to be offered as Web services
to any external user. By means of this wrapping technology, a user makes
use of the KDS service through a workflow without knowing the exact imple-
mentation of the service. In this way, a user’s computing environment can be
extended to a knowledge-based distributed computing environment. There-
fore, the grid portal takes advantage of the possibility of combining the most
innovative distributed knowledge discovery service and traditional data mining
algorithms with the other previously described tools for composing complex
geo-workflows. Each Web service (classical or distributed) is semantically an-
notated and, consequently, domain specific ontologies, designated for the Geo-
science domain, support the user in building complex workflows, even without
a deep knowledge of the domain itself. In fact, the user can choose the most
appropriate set of services to use for building the desired workflow or directly
querying the UDDI or exploiting the potentialities of these ontologies. Even
the resources, i.e. machines, database, etc.., are annotated so that the work-
flow engine, on the basis of user requirements, can choose the set of resources
apt to a determined task. This procedure is hierarchical, in the sense that
generated workflows that become new services, can be annotated and enrich
the overall domain ontology.

In order to give a more comprehensive explanation of the entire process, in the
following section, we will describe a significant example of a distributed data
mining service. The service, based on the P-SPARROW algorithm, executes
the task of clustering spatial data in a distributed way. It is a P2P version of the
SPARROW (SPAtial ClusteRing AlgoRithm thrOugh SWarm Intelligence)
algorithm [15] and it is based on a bio-inspired multi-agent paradigm that
exhibit a collective intelligent behavior (swarm intelligence [6]) and combines
the stochastic search performed by an adaptive flocking with a density-based
clustering method. Note that the emergent collective behavior is the outcome
of a process of self-organization, in which insects are engaged through their
repeated actions and interaction with their evolving environment. Intelligent
behavior frequently arises through indirect communication between the agents
using the principle of stigmergy [20].
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5 A knowledge service for distributed spatial clustering

In this section, the P2P SPARROW algorithm (P-SPARROW) is briefly de-
scribed, as an example of distributed knowledge service. For more details about
the algorithm, the reader can refer to [14].

P-SPARROW combines the stochastic search of an adaptive flocking algorithm
with a state-of-art density-based clustering method, the well-known DBSCAN
algorithm [12].

DBSCAN is not suitable for finding clusters in very large datasets neither it
is appropriate to work in a distributed environment. In fact, DBSCAN starts
to create and expand a cluster from a randomly picked point. It works very
thoroughly and completely accurately on this cluster until all points in the
cluster have been found. Then another point outside the cluster is randomly
selected and the procedure is repeated. This method is not suited to stopping
early with an approximate identification of clusters.

As in DBSCAN, P-SPARROW finds cluster performing region-queries on
core points but it introduces a decentralized strategy to perform the search of
the core points in parallel. P-SPARROW uses a multi-agent system to perform
the distributed search that discovers the points. P-SPARROW is constituted
of two phases: a local phase for the discovery of the core points on each peer
and a merge phase that concerns a global relaxation process in which nodes
exchange cluster labels with nearest neighbors until a fixed point (i.e. all nodes
detect no change in the labels) is reached.

All the data are partitioned among the peers, proportionally to the computing
power and to the cpu-load of the peer itself. Each peer implements the flocking
algorithm using a fixed number of agents that initially occupy a randomly
generated position in the space. Each agent moves testing the neighborhood of
each object (data point) it visits in order to verify if the point can be identified
as a core point. A color is assigned to the agents by a function associated to
the data analyzed during the exploration, according to the DBSCAN density-
based rules and with the same parameters. In practice, the agent computes the
local density (density) in a circular neighborhood (with a radius determined
by its limited sight, and then it chooses its color (and its speed) in accordance
with the the local density.

So red agents reveal a high density of interesting patterns in the data, green,
a medium one, yellow, a low one and white agents indicate a total absence of
pattern The main idea behind our approach is to take advantage of the colored
agent in order to explore more accurately the most interesting regions (signaled
by the red agents) and avoid the ones without clusters (signaled by the white
agents). Red and white agents stop moving in order to signal these regions to
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the others, while green and yellow ones fly to find clusters. Green agents will
move more slowly than yellow agents in order to explore more carefully zones
with a higher density of points. The variable speed introduces an adaptive
behavior in the algorithm. In fact, agents adapt their movement and change
their behavior (speed) on the basis of their previous experience represented
from the red and white agents. The merging phase works as the DBSCAN
algorithm, according that core points are exchanged among the peers in which
P-SPARROW runs. More details about this phase can be found in [14].

To evaluate the performance an to illustrate the benefit deriving from using
P-SPARROW in a distributed environment, we used a spatial dataset, SE-
QUOIA [25], composed by 62556 names of landmarks (and their coordinates),
and extracted from the US Geological Survey’s Geographic Name Informa-
tion System. In practice, the points in figure 8, represent points of interest

San Francisco

Sacramento

Los Angeles

Fig. 8. The Sequoia dataset.

in the sequoia area and the three main clusters, discovered using our algo-
rithm, correspond respectively to the areas of S. Francisco, Sacramento and
Los Angeles.

The dataset was partitioned using random sampling, respectively on 16, 32
and 80 partitions and data were distributed on different computing nodes of
the grid.

We run the algorithm using 100 agents working until they explore the 1%, 2%,
5% and 10% of the entire data set, using 16, 32 and 80 nodes. All the exper-
iments were averaged over 30 runs. Our algorithm uses the same parameters
as DBSCAN. Therefore, if we visited all the points of the dataset, we would
obtain the same results as DBSCAN, as the merge phase is the same. Then,
in our experiments we consider as 100% the cluster points found by DBSCAN
(note DBSCAN visit all the points). We want to verify how we come close
to this percentage visiting only a portion of the entire dataset and that must
be effective for different number of peers involved in the computation. Note
that the dominant operation in the computation is the execution of the range
queries, performed each time a point is visited, while the time of the other op-
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Fig. 9. Average percentage of points found for Sequoia dataset (perc. in comparison
to the total number of points for cluster) when P-SPARROW analyzes 1%, 2%, 5%
and 10% of total points, using 16, 32 and 80 peers.

erations is negligible. So, the fact of reducing the percentage of visited points
considerably reduces the execution time. In figure 9, we show the experimental
results concerning the accuracy and scalability of the algorithm by varying the
number of peers for Sequoia dataset. For instance, on 80 peers, visiting only
the 5% of points, on average, we obtain an accuracy of about 80% and visiting
the 10% of data we reach 93% of accuracy. Furthermore, the scalability (i.e.
the effect on the accuracy of increasing the number of peers and so reducing
the number of data points for peer) is quite good. In fact, for the 5% case, we
obtained a reduction from 88% for 16 peers to 81% for 80 peers while for the
10% case, we have a small reduction from 99% to 94%. Visiting only 1% of the
dataset we have low percentage of points found; however they are sufficient to
have an approximate idea of the shape of the clusters.

6 Real case scenario

One of the difficulties that civil protection authorities have to deal with in
order to confront emergency conditions such as a landslide, is the management
of the information coming up from the area in which the landslide takes place.
The difficulty becomes greater owing to the fact that after an landslide the
demand for urgent intervention is huge. Emergency response actions must be
taken immediately by civil protection authorities and a framework plan for the
planning and the execution of post landslide operations is essential. One of
the most critical actions that must be taken after a landslide is the discovery
of post landslide damaged buildings. Usually, data concerning the location of
the buildings, their main characteristics and damage to different parts of the
structure are collected, and can be compared to landslide map and historical
damage locations. MOSE can help a member of the civil protection to discover
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the above cited areas, named hot spots, which represent the regions of greatly
damaged buildings.

Location: paperoga.ge.imati.cir.it Location: vega.na.icar.crr.it
Feature; Web Server Feature; Cluster with 19 CPUs
Host: 3D Wisualization W.S Host: Camelot Grid W.5.

Location: spaci.na.icar.cnr.it
Feature: Cluster with 128 CPUs
Host: Knowledge Discovery W.S.

Location: http: /ficar.chr.it/mose
Feature: Web Server
Host: Grid Portal & WF Executor

Location: grid.pa.icar.cnr.it
Feature: Cluster 16 CPUs
Host: Knowledge Discovery W.S.

Fig. 10. Grid Environment for the execution of the workflow.

Location: icarus.cs.icar.cnr.it
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Host: 3D Visualization W.S.
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Loeation: mira.cs.icar.cnr.it
Feature: Gis Storage Server
Host: Gis Data Extractor W.S,

Location; darwin.cs.icar.cnr.it
Feature: Cluster with 16 CPUs
Host: Knowledge Discovery W.S,

M

palermo

Consider a scenario in which spatial data concerning the location of damaged
buildings are sent by detectors and stored in different nodes. A decision-maker
of the civil protection could use MOSE to recognize the highest density areas
with damaged building in order to prevent access to the area’s inhabitants.
The distributed nature of our knowledge discovery services make them suit-
able to operate directly on the computing resources in which data are stored;
furthermore, the incremental nature of P-SPARROW permits to give an im-
mediate, even if not completely accurate, answer to the necessity of discovering
the dangerous areas. MOSE, and mainly the P-SPARROW service, was ap-
plied on data concerning the landslide hazard areas in the Campania Region
near the Sarno area.

The MOSE’ environment is installed on the CNR Grid? (mainly using the
machines of the ICAR-CNR institute). The main components of the system are
illustrated in figure 10. A storage server is used for maintaining the GIS data
and for storing the repositories. The distributed knowledge discovery services
(comprising P-SPARROW) runs on three clusters placed in Palermo, Rende
and Naples. The main web server also hosts the Workflow Executor Engine.
The visualization server is executed on another parallel cluster. The 3D data
processed are compressed by the main visualization server in Rende and can
be visualized by any 3D visualization Server on the Grid, i.e the machine in
Genoa. The Camelot Grid simulator is generally executed on another cluster

2 http://cnrgrid.na.icar.cnr.it/
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in Naples, but it can also exploit the potentialities of the other two clusters
in Rende, when necessary.

In the our scenario, data collected by the sensors are distributed over the
three clusters dedicated to the knowledge discovery web services. The workflow
executor invokes and runs the P-SPARROW algorithm on these machines
and, as soon as the clusters are discovered, the results are collected by the
Visualization Engine and sent to the clients for the final visualization. In
this way, experts can visualize the potentially dangerous zones and take the
necessary emergency actions. Note that preliminary results are collected and
visualized constantly, with an increased precision about the dangerous zones,
as time passes.

The result of the execution of the entire process is shown in figure 11, ob-
tained using the overlap visualizer of MOSE to the clusters obtained by P-
SPARROW. In the circles, you can observe the three clusters representing
the areas of damaged buildings, obtained from a complete execution of the
workflow.

—alll

DAMAGED BUILDINGS

e
L [ I‘
8

Fig. 11. Visualisation of the workflow result.

Obviously, the information must be obtained as quickly as possible. P-SPARROW,
permits to find approximate clusters even if we do not explore all the points of
the data sets. So the user can receive initial information about the interesting
areas and can immediately act, afterwards, can ask for a more precise infor-
mation, as P-SPARROW go on finding new points of clusters. Each node, in
which the algorithms runs, acts independently of each other and intermedi-
ate results may be overturned as new data arrives. Therefore, the failure of a
single node does not compromise the final result. In fact, as you can see from
figure 11, using fewer peers slows down the process but almost the same result
is obtained, with the rare exception of a peer maintaining unique information.
In the latter, it is more convenient to use redundancy, replicating these data
on two or more peers. The storage server uses mirroring techniques to avoid
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failure or errors in the disk, while the visualization server employs other nodes
in case a single nodes fails. A main issue could be the failure of the Workflow
Executor that prejudices the correct execution of the entire system, suffering
of the typical problematic of the centralized systems. Techniques for distribut-
ing this part are in progress and have not been implemented in this version of

MOSE'.

7 Related Works

In the literature, there is a number of papers concerning distributed knowl-
edge services on the grid [8][23][22] and a few works correlated to the use of
grid technologies and workflows for coping with Geo-science applications [11].
However, to the best of our knowledge, no work merging the potentialities of
the two fields is presented.

WekadWS [26] belongs to the first typology and is a framework supporting
local and remote data mining tasks on grid environments. It supports the new
technical specifications of WSRF and uses a GUI for composing distributed
data mining applications. A performance evaluation conducted on LAN and
WAN environments demonstrates the efficiency of the approach. Its applica-
tion to geo-science problems would require integration with GIS, but it does
not supply a dedicated portal and does not provide advanced visualization
services.

One of the best-known workflow-based graphical problem solving is Triana
[9][28][27], permitting Grid jobs and Web services to be run. Similarly to
MOSE, Triana supplies peer-to-peer services (also comprising bindings for web
services) and a visual interface permits a user to run complex grid workflows.
These services can be accessed by means of a Grid Application Prototype
Interface (GAP) API. It also supports the use of BPEL4AWS, but it suffers the
same limitations as WekaWS for the application to Geo-Science application.

The CYCLOPS project [2](CYber-Infrastructure for CiviL protection Opera-
tive ProcedureS) aims to join two important communities, the Global Mon-
itoring for Environment and Security (GMES) and EGEE (Enabling Grids
for E-Science in Europe). GMES was founded by the EU Commission in 2001
with the purpose of enabling decision makers to better anticipate or miti-
gate crisis situations and management issues related to the environment and
security, while EGEE project provides a powerful GRID platform to imple-
ment services for specific application communities. In practice, CYCLOPS is
a framework for developing real time applications for Civil Protection using
high-performance computing and distributed environment for running simu-
lations. The authors indicate forest fire propagation, landslide monitoring and
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earthquake damage assessment as possible applications.

The GEO Grid project [3] integrates data, computing services and archives of
earth observation satellite for building an infrastructure to support the task
of Global Earth Observation. The system permits one to cope with global
problems such as environment conservation, natural disaster prevention and
resource exploration. GEO Grid joins standard technologies such as OGSA
(Open Grid Serivices Architecture), web service interface, and GSI (Grid Se-
curity Infrastructure) for secure interoperation with other organizations. The
framework was applied to an important geo-hazard application, the building
of an emergency volcanic hazard map based on the possible coverage maps
of pyroclastic flow deposits caused by a volcanic dome collapse. In spite of
the utility of CYCLOPS and GEO Grid for coping with hazard problems,
as MOSE, however both the two framework do not provide high level tools
for building workflows and monitoring the simulation and/or visualization
services and this limits their usability for scientists not experts in grid and
computer science technologies.

OWS-4 (OGC Web Services) [5] enables the design of complex geoscience
applications by means of BPEL [WS-BPEL| workflow based on the Open
Geospatial Consortium (OGC) services. The OGC is an international, non-
profit making, voluntary organization that develops standards for geospatial
and location based services. However, it does not provide any database mech-
anism, in particular for Web databases, which is fundamental owing to the
large scale of Internet.

LEAD (Linked Environments for Atmospheric Discovery) [24] helps the user
to detect, analyze and predict atmospheric phenomena by means of a dynamic
workflow orchestration and data management system. It is based upon SOA
(service oriented architecture) and on a web services framework. It permits
workflows to be composed using analysis tools, forecast models, and data
repositories to run on adaptive, on-demand, grid-enabled systems and it is
able automatically to change configuration when necessary. The system was
tested on the LEAD Grid, i.e. is a set of dedicated distributed computing
systems located on six different locations in the USA. Differently from the
other reviewed systems, LEAD integrates data mining tools and services and
support execution on Grids, as MOSE’. Nevertheless, the system cannot fully
exploit the potentialities of mixed (parallel and grid) architectures, as it does
not provide any distributed service.
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8 Conclusions

This paper presents the MOSE system that is capable of managing Geopro-
cessing applications on a Grid exploiting the potentialities of distributed KD
services and of high performance CA simulation. The primary advantages of
MOSE are the performance gain obtained using web /grid distributed resources
and the support for the interoperability of data and resources. Furthermore,
the P-SPARROW service is able to perform approximate clustering on dis-
tributed resources using a multi-agent based paradigm. Its incremental nature
is particularly suitable for coping with emergency conditions. Future works
will concern the automatic building of workflows and tackling many aspects
of the distributed nature of the grid as checkpoint, fault tolerance strategies,
etce..
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