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Abstract

In this paper we present CAMELotGrid, a tool to manage Grid computations of
Cellular Automata that support the efficient simulation of complex systems modeled
by a very large number of simple elements (cells) with local interaction only. The
study of these systems has generated great interest over the years because of their
ability to generate a rich spectrum of very complex patterns of behavior out of
sets of relatively simple underlying rules. Moreover, they appear to capture many
essential features of complex self-organizing cooperative behavior observed in real
systems. The middleware architecture of CAMELotGrid is designed according to an
autonomic approach on top of the existing Grid middleware and supports dynamic
performance adaptation of the cellular application without any user intervention.
The user must only specify, by global criteria, the high level policies and submit the
application for execution over the Grid.
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1 Introduction

The emergence of Computational Grids [12] as the next generation distributed
computing platform has enabled a new generation of applications based on
seamless access, aggregation and interaction. For example, it is possible to
conceive a new generation of scientific and engineering simulations of complex
physical phenomena that combine computations, experiments, observations,
and real-time data and can provide important insights into complex systems
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such as road traffic, image processing, landslide simulation and science of
materials.

Many of these phenomena have been successful modeled and simulated by
cellular automata (CA)[24]. CA are mathematical models for complex natural
systems containing large numbers of simple identical components with local
interactions. They consist of a lattice of sites, each with a finite set of possible
values. The value of the sites evolve synchronously in discrete time steps ac-
cording to identical rules. The value of a particular site is determined by the
previous values of a neighborhood of sites around it. CA are discrete dynam-
ical systems with simple construction but complex self-organizing behavior.
Current CA packages are either specialized single node programs or they are
programming environments for building parallel applications. Today, with the
current trend for larger scale CA problem solutions, we need Grid-enabled
implementations of CA.

Computational Grids provide the software and networking infrastructure to
harness a heterogeneous environment that includes geographically distributed
computer domains, to form a massive computing environment through which
large scale problems can be solved. To achieve this goal, Grids need to support
various tools and technologies that can guarantee security, uniform access, re-
source management, scheduling, application composition, computational econ-
omy and accounting [3].

Realizing software systems on the Grid requires not only the knowledge of
standards such as OGSA (Open Grid Services Architecture) and tools like
Globus [11], but also sophisticated paradigms that effectively hide the com-
plexity of creating and deploying truly parallel Grid applications in presence
of dynamicity, adaptivity and fault tolerance.

High level problem solving environments (PSEs) provide a general, uniform
framework allowing researchers to concentrate on their specific system of in-
terest without being involved in the lower level parallelization tasks. However,
building PSEs in a computational grid infrastructure [26,19] is a challenging
task because the concurrent program, which represents the runtime of the ap-
plication, must dynamically adapt to changing resource availability in the grid
environment. Supporting dynamically configurable programs requires a pro-
gramming paradigm and management techniques that deal with complexity,
heterogeneity and uncertainty. This has led researchers to consider alternative
programming paradigms based on the strategies used by biological systems
that exhibit a self-organizing behavior and that have been recognized suitable
for managing distributed resources.

A significant bio-inspired paradigm has been defined by IBM in its ”Auto-
nomic Computing” program [16]. An autonomic computing system is a system
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which has the capabilities of being self-defining, self-healing, self-configuring,
self optimizing, etc. and is able to manage itself without involving the user,
in the same way the autonomic nervous system regulates the body systems
without conscious input from the individual. The user must only specify, by
global criteria, the high level policies (runtime partitioning strategies, etc.)
and submit the application for execution over the Grid.

In this paper, we present CAMELotGrid, the Grid-enabled version of the
Camelot (Cellular Automata environMent for systEms ModelLing open tech-
nology) PSE developed in the Esprit project COLOMBO [18,8]. CAMELot-
Grid is a new middleware designed on top of the existing Grid middleware,
which uses autonomic Grid functionality to intelligently manage problem par-
titioning, problem piece deployment, runtime management, dynamic level of
parallelism, dynamic load balancing, and, in future, even fault tolerance and
recovery.

The remainder of this paper is organized as follows. Section 2 briefly presents
an overview of Camelot. Section 3 and 4 describe how to specify autonomic
requirements of a cellular application and the middleware architecture of
CamelotGrid. Section 5 illustrates the performance model for predicting appli-
cation execution time and in section 6 we evaluate the application performance
using a landslide cellular model. Section 7 concludes with a summary.

2 Camelot overview

Camelot is a high performance simulation environment based on the CA for-
malism [25]. In our approach, a cellular algorithm is composed of all the tran-
sition functions of the cells that compose the lattice. Each transition function
generally uses the same local rule, but it is possible to define some cells with
different transition functions (heterogeneous cellular automata). Unlike early
cellular approaches, in which cell state is defined as a single bit or a set of
bits, we define the state of a cell as a set of typed sub-states. This allows
extending the range of applications that can be programmed by cellular algo-
rithms. Furthermore, we introduce a logic neighborhood that may represent
a wide range of different neighborhoods inside the same radius and that may
also be time-dependent. We have also implemented some mechanisms to ob-
serve and control the evolution of the automaton. The CAMELot simulation
environment consists of:

• a graphic user interface (GUI) for editing, compiling, configuring, executing,
visualizing and steering the computation. The GUI allows, by menu pops,
to define the size of the CA, the number of the processors on which the
automaton must be executed, and to choose the colors to be assigned to the
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cell sub-states to support the graphical visualization of their values;
• a software library to integrate raster GIS images into the CA. The raster

information can consist of different variables such as altimetry, soil, tem-
perature, vegetation, etc. In CAMELot these variables are associated with
the sub-states where the transition function provides a dynamic alteration
of the information. For instance, the temperature values can be changed by
a simple model that updates the temperature with regard to the hour of
the day;

• a load balancing algorithm similar to the scatter decomposition technique to
evenly distribute the computation among processors of the parallel machine;

• a language, called CARPET [7], which can be used to define cellular algo-
rithms and to perform steering commands when complex space and time
events are detected.

CARPET is a language to program cellular algorithms and contains constructs
to extend the range of interaction among the cells, introducing the concept
of region, and to define algorithms to perform computational steering. It is a
high-level language based on C with additional constructs to describe the rule
of the state transition function of a single cell of a cellular automaton and
to steer the application. A CARPET program is composed of a declaration
part that appears only once in the program and must precede any statement,
a body program that implements the transition function, and a steering part
that contains a set of commands to extract and analyze system information
and to perform steering.

Figure 1 shows an example of application of these constructs. Two 3D regions
are defined in a three-dimensional cellular automaton. The event expression
checks whether the maximum and the minimum of the rainfall sub-state in a
region(zone1) are equal. In case they are, the computation is stopped. If the
sum of the rainfall values in another region(zone2) is greater than a threshold,
then the value of the alpha parameter is changed. In any case, the computation
is stopped after 10000 generations.

3 CAMELotGrid: an autonomic PSE

CAMELotGrid [8,6] is a PSE that provides a complete integrated comput-
ing environment for CA programming, permits to specify the global criteria
defining the autonomic requirements of the application and to support the exe-
cution of cellular applications over the Grid. It extends the original CAMELot
architecture for incorporating the features of self-configuring, self-optimizing,
self-healing, etc., of an autonomic system, in order to realize a Grid-enabled
middleware architecture where the runtime autonomic management of the
application is done without any user intervention.
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cadef {
....

state (float rainfall, infiltration);
parameter (alpha 2.0, ....);
.....

region (zone1(10:20, 1:30, 5:50), zone2(1:4, 3:10, 1:50));
}

.....

steering
{

if (step > 10000)
cpt abort();

if (region max(zone1, rainfall) == region min(zone1,rainfall)
cpt abort();

else if (region sum(zone2, rainfall) > Threshold)
cpt set param(alpha, 3.5);

.....

}

Fig. 1. An example of use of steering commands in CARPET.

In CAMELotGrid a spatio-temporal problem can be modeled by a 2D or 3D
array of cells where each cell represents a portion of a landscape. By CARPET
a user can describe, using the declaration, body and steering part, the transi-
tion function that represents the cellular program of the complex phenomenon
that he/she intends to model. To support the development of autonomic ap-
plications we have extended CARPET with a new part, called autonomic. In
the autonomic part, a user can define a set of rules to specify high level poli-
cies that capture different aspects of autonomic behavior. The rules defined in
the autonomic part are used to manage the runtime behavior of the system.
Rules incorporate high-level guidance and practical human knowledge in the
form of event-condition-action (ECA) control structure. ECA rules are usually
written in the following form:

on event (if conditions) then actions (else actions)

where event represents the event which should ignite the evolution of the base-
level system, conditions, and actions, respectively, represent the conditions the
run-time support must validate when the event occurs and the actions the
run-time support must carry out for adapting the system against the occurred
event. An event can be any change in resources availability over time while
the application is executing. For example, new processing nodes may become
available or required for higher priority tasks; links may become overloaded,
influencing the application performances. In all these cases, actions should be
defined to adapt the run-time behavior of the algorithm to the current compu-
tation workload. In this section, we demonstrate how CARPET can be used
to enable autonomic self-managing behavior in cellular applications. We focus
on two aspects of self-management: self-configuration and self-optimization of
the deployed system.

Cellular autonomic applications can dynamically reconfigure themselves to
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tackle the variation of availability and performance of grid platforms over time.
Application adaptation is automatically triggered by changes of environmen-
tal status. Furthermore, applications should continually seek opportunities to
improve their own performance and efficiency.

Figure 2 shows an example of the autonomic part of CARPET. In the example,
for every event occurs in the system the runtime system of CARPET is notified
in order to decide whether an ECA rule will be triggered by that or not. If a rule
is triggered a redistribution or a reconfiguration of the cellular automata will
be executed. The program supposes that the user imposes to execute a cellular
program with an efficiency value equal to 0.7 using a virtual machine (VM)
with k nodes selected among the current resources (i.e. processors available)
of the Grid.

When some nodes become overloaded the efficiency can decrease so to keep
the efficiency above the predefined threshold, if the number of processors be-
longing to the VM does not change, a redistribution of the automata must
be performed. The redistribution involves a dynamic reallocation of some por-
tions of the automata, without to stop the running system, from the overloaded
nodes to the more unloaded nodes. The efficiency value (computed using the
performance model described in section 5) is evaluated at run-time and auto-
matically updated.

In the case that at the most three nodes fail or the execution time, measured
by a sensor at run-time, becomes greater than a predefined threshold the
automata must be reconfigured. Reconfiguration is a more complex action
that is performed for fault tolerance or self-optimization purposes. During
the reconfiguration cycle a checkpoint of the automata is built, the internal
process state is saved, the execution is frozen, new optimized executables are
built and the application is re-launched.

.......

steering {
......

}

autonomic {
on (efficiency < 0.7)

if((cardinality (VM )== k) then redistribute();
on (failure (VM ) ‖ responseTime > 2))

if (cardinality (VM ) >= (k -3 )) then reconfigure()
else stop ;

}

Fig. 2. An example of use of autonomic section in CARPET.
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4 CAMELotGrid Architecture

In CAMELot, the run-time support was implemented as a SPMD (Single
Program, Multiple Data) program. The latest implementation is based on the
C language plus the standard MPI library and can be executed on different
parallel machines and clusters of workstations. The concurrent program that
implements the architecture of the system is composed by a set of macrocell
processes, an execution engine and a GUI process. Each macrocell process,
that operates on a strip of cells of the CA, runs on a single processing element
of the parallel machine and updates the state of cells belonging to its partition.

The synchronization of the automaton and the execution of the commands,
provided by a user through the GUI interface or described in the steering sec-
tion, are carried out by the execution engine. The execution engine partitions
the 2 or 3D cellular space according to the indications of the user and assigns
the portion of the cells that must be processed to each macrocell process.

We extended the CAMELot architecture to support the development of au-
tonomic cellular applications on the Grid. CAMELotGrid is the new mid-
dleware architecture that is implemented on existing Grid middleware and
runtime services. An overview of the CAMELotGrid middleware architecture
is shown in the figure 3. The Grid middleware layer takes advantage of the
services offered by the Globus Toolkit [11], by the MPICH-G2[13] library,
a grid-enabled implementation of the MPI v1.1 standard, and by the Net-
work Weather Service (NWS) [21,22], a monitoring system to forecast short
term network performance. In particular, NWS provides accurate forecasts
of dynamically changing performance characteristics from a distributed set
of metacomputing resources. MPICH-G2 uses services (e.g., job startup, secu-
rity) provided by Globus to coordinate and manage work on multiple computer
systems, potentially of different architectures.

The main components of the CAMELotGrid infrastructure architecture in-
clude the CAMELotGrid Manager (CGM), the Computational Resource Man-
ager (CRM), the Application Performance Model (APM), and the Execution
Engine (EE).

In what follows, we will describe how an application submitted by the user
will use the CAMELotGrid infrastructure services to exploit the heterogeneous
Grid resources and to achieve autonomic runtime management.
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Fig. 3. The CAMELotGrid middleware architecture.

4.1 Deployment Strategy

The main administrative component in the CAMELOTGrid architecture is
CGM, which is the autonomic application manager that sets up and config-
ures/reconfigures the application execution environment, manages and con-
trols all the autonomic requirements (e.g., self-configuring, self-optimizing,
etc.) through the ECA rules defined in the autonomic section of CARPET.

CGM is started by the GUI interface when the user wants to execute a new
application. Before to start the execution of the distributed application, CGM
must determine a valid configuration and to load the macrocell processes onto
the chosen remote hosts.

CGM uses the performance model defined in the APM module and described
in the section 5, to choose the most appropriate pool of resources to schedule
the components of the application. The performance model allows to predict
the lowest estimated application execution time on a given set of resources
with a given topology.

The resource information, including the number of current available compu-
tation resources and their usage, necessary to feed the performance model
are provided by the CRM module to CGM. Using these information CGM,
assisted by APM, identifies a subset of the available resources to constitute
the VM on which the application will be executed, calculates a mapping of
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data and/or tasks to those resources and provides the best schedule for the
macrocell processes. Finally, CGM starts the EE module.

The EE module generates the processes required to simulate the model on
each the defined subspaces and deploys the application. EE communicates
to CGM and CRM information about the status of the computation of the
automaton and its eventual termination.

Furthermore, on request of CGM, EE can save or load a configuration of
the automaton, abort and restart the computation with a new mapping and
schedule (see next section).

4.2 Autonomic Runtime Management Strategy

During the execution of a cellular application, CAMELotGrid is capable of
dynamically managing, adapting and optimizing its behaviour to dynamic
changes in the Grid environment (e.g. workload) and scale well (e.g. in terms
of the size of applications).

CAMELotGrid can be dynamically reconfigured by the CGM module. CGM
uses an adaptive scheduling algorithm based on the same policy used by
GRADS [2]. CGM receives notifies by CRM on any change of the network
resources. CRM is an active module able to analyze the information coming
from the Grid infrastructure. For example, CRM can determine if the network
is congested or if new nodes are available in the Grid environment.

CRM supports information collection by the two most widely used Grid re-
source information systems, the Metacomputing Directory Service (MDS) and
NWS. MDS collects and publishes system configuration, capability, and status
information such as operating system, processor type and speed, number of
available CPUs, and the software installed. The information that can typi-
cally be retrieved from a NWS server include the fraction of CPU available to
a newly started process, the amount of memory that is currently unused, and
the bandwidth in which data can be sent/received to/from a remote host.

Each dynamic variation notified by CRM triggers an event that control whether
the application is delivering an acceptable level of performance (e.g. a level of
efficiency). The evaluation of acceptable levels of performance is the shared re-
sponsibility of the APM module and the CGM module. To this aim, CGM uses
the autonomic section of CARPET which contains rules that define actions
to be executed when specified conditions are satisfied.

During the execution, if CGM determines that the application is not making
reasonable progress with respect to the defined policies (or alternatively, if the
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system becomes aware of more suitable execution resources), a rescheduling
action can be invoked.

Examples of rescheduling actions are replacing particular resources, redistrib-
uting the application workload/task on the current resources, and adding or
removing resources, or doing nothing (continuing execution with the current
VM). Basing on the knowledge of the current execution, CGM determines the
best course of actions in order to improve progress.

Mainly, we can answer to changes in the environment with two kinds of actions:
redistribution and reconfiguration. The first action requires a more simple pol-
icy: consider the case in that the load is unbalanced, as, for instance, new
jobs are started on any processors of the VM. Then, CGM can redistribute
the load, moving portion of the automata from more loaded machines to less
loaded ones , using the information coming from CRM. A similar policy has
been adopted in the Dynamite system [14].

The latter action is due to a failure in any resources belonging to the virtual
machine or it can be a consequence of new available processors potentially can
increase the efficiency of the VM.

To reconfigure the application, CGM must checkpoint the run-time support
(sending a message to EE to save the current configuration), make changes to
the plan execution that may imply addition, removal, migration or replacement
of components. Finally, after to have load the checkpoint information, the
program continues the execution.

Clearly, in order to make this execution scenario work, we must have a reason-
able performance model and mapping strategies for each cellular application.
In the next section, we present the performance model used in CAMELotGrid.

5 Performance Model

In this section, we describe the performance model used by APM to evaluate
the performance application. The performance model is an analytic metric
for predicting application execution times on a given set of resources with a
defined communication topology.

On a sequential machine we can model the execution time for one time-step
of the cellular automaton, where a, b, c are the CA dimensions, as:

Ts = tas + abc
tf + tup

Cl
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where tf is the average computation time required to perform a transition
function at a single grid point, tas is the average time required to perform
some simple initialization operations, tup is the time necessary to update the
cellular space with new values and Cl is the percentage of cpu load available
to the application. So, defining t′f =

tf+tup

Cl
we have:

Ts = tas + abct′f (1)

Now, consider a pool of resources with different computing power and different
cpu load (Grid computing environment). Define t′f(i) =

tf(i)+tup(i)

Cl(i)
where the

symbols are the same used before, concerning the ith processor as explained
in table 1.
Table 1
Main symbols used in the model.

a Width of the automata

b Height of the automata

c Depth of the automata

d substate dimension in bytes

P number of processors

tf (i) avg. exec. time of the transition function on the ith proc.

Cl(i) perc. of cpu load available to the application on the ith proc.

ts(i, i + 1) start-up time for comm. from the ith proc. to i + 1th proc.

tb(i, i + 1) time to send a byte for comm. from the ith proc. to i + 1th proc.

tas(i) additive sequential time on the ith proc.

tap(i) additive parallel time on the ith proc.

Define fi = 1
t′
f(i)

as an index of computing frequency of the processor ith. At

this point, we can compute the total frequency as f =
∑p

i=1 fi and αi = fi

f
.

So we can balance the computing load, decomposing the cellular automata
along the longer direction (see figure 4 that uses a decomposition along the x
axis) and assigning to each node a sub-grid of dimension aαibc. The compu-
tational load for processor will be abc

f
.

Each processor has allocated a task performing the same computation on each
point and at each time step. Each sub-grid is bordered in order to allow a local
selection of the neighbors. The main operations of the distributed algorithm
for the run-time execution of the CA are summarized in figure 5.

The total execution time of the distributed CA can be modeled by summing
the computation cost of all these functions, and considering the maximum
time for processor; so for one iteration we obtain:

Tp =
p

max
i=1

(maxtas(i) +
abc

f
+ Texc(i)) (2)
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Fig. 4. Partition of automata among three processors.

foreach iterations
foreach processor

foreach z,y,x
transition function(x,y,z,step)

end foreach
copy borders
exchange borders
copy CA

end foreach
end foreach

Fig. 5. The distributed algorithm for the run-time execution of the CA.

Note that we ignore the copy border time since it is negligible with respect
to the other terms. Each task, before the execution of an iteration of its own
sub-grid of the automata must exchange the borders of its own portion with
two neighboring processors and receive those of the neighbors for a total of
two messages exchanged and 2bcd data. The time required to exchange the
borders, according to the Hockney’s model [27], is

Texc(i) = 2ts(i, i − 1) + 2bcdtb(i, i − 1) + 2ts(i, i + 1)+
2bcdtb(i, i + 1)

where ts(i, i− 1) and tb(i, i− 1) are respectively the start-up time and the for-
byte time to communicate with the left neighbor and ts(i, i−1) and tb(i, i−1)
are the corresponding parameters to communicate with the right neighbor.

The time spent by copy boundary and copy CA depends on the dimension of
the portion of the automata lying on a processor and on the total number
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of sub-states. Therefore, we can represent the total execution time on the
distributed environment, Tp as:

Tp =
abc

f
+

p
max
i=1

(tap(i)) + 4bcd
p

max
i=1

(tb(i, i − 1)) (3)

where tap(i) includes tas(i) and other overhead not depending on the dimension
of the automata.

In parallel computing notation, we can compute the speedup as S = Ts

Tp
(with

an ideal value of p = number of processors) and the efficiency as S
p
, but in

grid computing each machine has a different computing power, memory, etc..
So Ts is different on the basis of the machine considered. Then we take one
of the machine Mi composing the Virtual Machine as reference (better one
with an average computing power) with comkputing frequency fi. Then, we
can compute the Ts referred to this machine and define the effective number
of processors Peff as:

Peff =
f

fi

(4)

and consequently the efficiency becomes: Eff = Ts(i)
peff×Tp

So, the ideal case of

speedup will be peff and we can use these formulas in the model.

At first, the model can be useful to compute the different portions of au-
tomata to put onto the different processors (the αi parameters). Then, as we
know the execution times of the transition function obtained from the MDS
on the different processors, the CPU loads and the start-up and for-byte times
for communications obtained from the NWS, we can easily compute the effi-
ciency of the system using different configurations of the available processors.
Furthermore, this model can constitute a valid support for the scheduler, be-
cause, if we fix a desirable value of efficiency, we can obtain the pool of suitable
resources with which to reach this value, if they exist.

In order to simulate CA models with transition functions or domains not
homogenous we use a more clever decomposition. According to this strategy,
the cells partitioning is static, whereas the number of cells mapped in each
partition is dynamic. The automata is before divided into k vertical folds,
where k is defined by the user. Each fold is then partitioned into p strips
of dimension aαibc

k
, where p is the number of nodes. Then each node Pi is

responsible of k strips for a total of aαibc cells and communicate only with
processes Pi−1 and Pi+1, as in the previous decomposition. The number of
folds should be chosen with caution, since the more strips are used, the bigger
the communication overhead among the processing elements becomes. For
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instance, in figure 6 the automata is decomposed in 4 folds and then assigned
to 3 processors; in this way, the load is more balanced with comparison to the
previous decomposition.

Fig. 6. Decomposition of the automata in 4 folds and resulting assignment to 3
processors.

The performance model must be modified to include the new strategy, as we
have to exchange the border data of all the strips allocated on a generic node,
i.e. 2kbcd data. The main changes of the model concern the time required to
exchange the borders that becomes:

Texc(i) = 2ts(i, i − 1) + 2kbcdtb(i, i − 1) + 2ts(i, i + 1) + 2kbcdtb(i, i + 1)(5)

and the total execution time will be the following:

Tp =
abc

f
+

p
max
i=1

(tap(i)) + 4kbcd
p

max
i=1

(tb(i, i − 1)) (6)

In the next section, we show how the model works in a real Grid environment.

6 Validation of the Performance Model

In order to validate the accuracy of our performance model, we performed
experiments on nodes of the Grid of our Institute (ICAR-GRID) and on Grid
nodes of an early deployment of the SP3 Italian national Grid funded by
MIUR. We used six machines of our laboratory, five with two processors (called
k1, k2, k3, k4, icarus) and one with one processor (called minos), all of them
with Globus, MPICH-G2 and NWS installed. Note that k1, k2, k3, k4 are
linked with a dedicated network, so that their latency is lower than the others
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links. Furthermore, we used the node called griso, belong to the Grid labora-
tory of the University of Calabria and the nodes called galestro and prosecco
belong to the laboratory of the ISTI-CNR located in Pisa.

In our experiments we ran a CA simulation of the landslide events that have
interested the Campania Region in May 1998 in the Sarno area. [1].

Our simulation is based on the model of debris/mud flows defined by Di Gre-
gorio et al. [1]. This model defines the ground as a two-dimensional plane
partitioned into square cells of uniform size. Each cell represents a portion of
land, whose altitude and physical characters of the debris column laid on it
are described by the cell states. Although the model is two-dimensional we use
the altimetry state to create a false 3D simulation, generally called 2,5D simu-
lation [24]. The state evolution depends on a transition function programmed
in CARPET, which simulates the physical processes of the debris flow. The
dimensions of the CA used in the experiments are a varying from 880 to 7040,
b = 768, c = 1, with 300 bytes of substates (d) and we have performed 100
time-steps for simulation.

In table 2 the characteristics of the machines used and the average times mea-
sured using this transition function are summarized. The additive sequential
time tas and the average execution and update time t′f , are estimated when
the machines are unloaded. These execution times can be obtained from the
MDS, if the information is present, or estimated from an apposite module of
the APM. This module runs a light version of Camelot on the nodes of in-
terest or estimate an approximate value using the cpu speed and the memory
information taken from the MDS. Obviously, communication times and cpu
loads are measured on the fly by the NWS subsystem.

Table 2
Machines used in the experiments

Machine tas t′
f

CPU (number) Memory Institute

(µsec) (µsec) (MBytes)

k1, k2, k3, k4 728 23.82 PIII 800M (2) 256 ICAR-CNR

Minos 469 17.41 PIV 1.5G (1) 375 ICAR-CNR

Icarus 564 19.23 PIII 1.133M (2) 2048 ICAR-CNR

griso 405 11.86 PIV 2G (1) 512M DEIS-UNICAL

galestro 422 14.13 PIV 1.7G (1) 256M ISTI-CNR

prosecco 1283 105.64 P. Pro 200M (2) 256M ISTI-CNR

The results obtained for the different dimension of the automata and config-
uration of the nodes used (see tables 3, 4, 5) show a good agreement between
the model and the experiments. In fact, we obtained a relative error lower
than 10% in all the tries that involve nodes connected by a local area network
(LAN) and lower than 20% in the experiments that involve nodes connected
by a wide area network (WAN). Effective nodes in the table give an idea of the
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computing power of the virtual machine used in the experiment (considering
also the cpu loads) in comparison with the computing power of the icarus ma-
chine (i.e. a eff. nodes of 3 is equivalent to three times the computing power of
icarus). Note that in the tables with larger dimensions of automata we obtain
a lower relative error. An automata of dimension 3520 × 768 is sufficient to
obtain an efficiency of more than 80% in the LAN and MAN configurations,
while in the last suite concerning the WAN configuration, we need a dimension
of 7040 × 768 to obtain an efficiency value of 67%. Observe that simulations
with a heavier load, as suite 4 of table 3, perform slightly worst in terms of
relative error.

Table 3
Exec. time predictions for 100 iterations and dim. of the automata = 880× 768× 1

Machine (processors) Eff. nodes Efficiency Pred. time Meas. time Rel. err.

k4, icarus (2) 1.76 0.90 820.76 871.11 -5.78

k4, icarus (4) 3.39 0.82 465.30 501.77 -7.27

icarus, minos, k4 (5) 3.64 0.81 438.93 477.29 -8.04

k1, k2, k3, k4, minos, icarus(11) 6.63 0.66 299.25 322.80 -7.30

k1, minos, icarus, griso (4) 3.72 0.54 645.67 743.73 -13.18

k1, minos, icarus, griso, prosecco, galestro (6) 5.34 0.24 1024.12 1261.15 -18.80

Table 4
Exec. time predictions for 100 iterations and dim. of the automata = 3520×768×1

Machine (processors) Eff. nodes Efficiency Pred. time Meas. time Rel. err.

k4, icarus (2) 1.70 0.98 3125.28 3210.35 -2.65

k4, icarus (4) 2.26 0.97 2361.98 2258.94 4.56

icarus, minos, k4 (5) 4.11 0.94 1347.92 1395.98 -3.44

k1, k2, k3, k4, minos, icarus(11) 7.51 0.87 795.62 885.04 -10.10

k1, minos, icarus, griso (4) 4.05 0.83 1548.23 1747.15 -11.38

k1, minos, icarus, griso, prosecco, galestro (6) 5.69 0.51 1804.54 2172.69 -16.94

Table 5
Exec. time predictions for 100 iterations and dim. of the automata = 7040×768×1

Machine (processors) Eff. nodes Efficiency Pred. time Meas. time Rel. err.

k4, icarus (2) 1.74 0.99 6070.75 6012.73 0.96

k4, icarus (4) 3.29 0.98 3225.33 3184.54 1.28

icarus, minos, k4 (5) 4.23 0.97 2540.44 2645.97 -3.99

k1, k2, k3, k4, minos, icarus(11) 7.91 0.93 1417.26 1460.49 -2.96

k1, minos, icarus, griso (4) 2.81 0.93 3969.49 4316.57 -8.04

k1, minos, icarus, griso, prosecco, galestro (6) 5.79 0.67 2686.90 3103.97 -13.44

To validate the runtime strategy (only the redistribution one) we employed
the percent degradation from the best [17] a largely used metric for compar-
ing performance degradation. In practise, we run the system for k times and
maintain bestTime, the lowest execution time obtained in the k simulations.
Then, the metric can be defined as:

degFromBest = 100 ×

T ime − BestT ime

BestT ime
(7)
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where time is the execution time of the current simulation. We run Camelot-
Grid using the above cited Sarno simulation for 10000 time steps so that many
changes in the VM state can take place and we averaged it over 20 runs. In
figure 7, we reported the average percent degradation (see equation 7) for the
three last test suites of table 3, with and without the autonomic strategy. The
bar concerning the autonomic strategy contains the overhead due to the redis-
tribution procedure. Note that in all the cases, the autonomic strategy (also
considering the overhead) outperforms static one, because the redistribution
of load is adapted to the features of the machines and to the changes in the
environment.

Fig. 7. Average percent degradation from best for static and dynamic strat-
egy using test-suite 1 (k1,k2,k3,k4,minos,icarus), 2 (k1,minos,icarus,griso), 3
(k1,minos,icarus,griso,prosecco,galestro).

7 Related Work

OptimalGrid [15] is a middleware for Grid environment used to distribute
interconnected problems on the grid, automating the problem partitioning,
the problem deployment, the runtime management and the dynamic rebal-
ancing/redeployment of the problem. Using OptimalGrid, the developer can
describe the various characteristics of the problem and then the middleware
handles events of faults and/or performance problems automatically. The sys-
tem uses a representation of the problem similar to a cellular automata.

Indeed, OptimalGrid is based on the definition of an Original Problem Cell
(OPC), the smallest piece of a problem, of a Map, describing the connections
between OPC and of Variable Problem Partition (VPP), the set of OPC as-
signed to a grid node. Communications among the different nodes are handled
by means of a distributed whiteboard based on Tuplespace communications
systems, i.e. each node can read or write on this whiteboard. OptimalGrid
includes most of autonomic characteristics also present in CamelotGrid, but
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communications between nodes are handled using a shared space as the Tu-
pleSpace system [28] and not using more efficient communication libraries as
MPICH-G2 and this could give performance problems on the grid environment
and could not guarantee a satisfactory scalability in many cases. Furthermore,
user defined autonomic strategy cannot easily be defined as using the auto-
nomic section of Carpet in our tool.

GridWay [10] is a framework based on Globus for adaptive execution and
scheduling on Grids. It is provides a personal submission agent that incorpo-
rates the runtime mechanisms needed for transparently executing jobs in a
Globus-based Grid and it also supplies fault recovery mechanisms. GridWay
has a modular architecture, supplying the main services of resource selection
and performance evaluation. The first service is called when a scheduling or
rescheduling action must be performed while the latter verifies the presence
of performance degradations and requests the appropriate actions. The main
drawback of GridWay is that, differently from the CamelotGrid approach, it
does not support self-adaptive applications.

Cactus-Worm [4], a grid-enabled framework based on Cactus [5], a modular
toolkit for the construction of parallel solvers for differential equations, imple-
ments modules for dynamic data distribution, latency tolerant communication
algorithms and detection of application slowdown. It uses two main modules:
the Resource Selector service, responsible for resource discovery and selec-
tion on the basis of request from applications using the ClassAds syntax [20]
and the Migrator that detects contract violation and migrates the simulation
state from one resource to the next (suggested from the resource selector).
CamelotGrid permits the operation of redistribution action, moving a portion
of automata from a machine to another, without need of checkpointing the
application and restarting all, in a very efficient way. On the contrary, Cactus,
when a contract violation is detected, must checkpoint the application and
restart it by means of the interaction between the Migrator and the Resource
Selector service. In [23] a model was developed to predict and validate the
performances of Cactus-Worm in grid environments.

GrADS (Grid Application Development Software) [2], is a project with the
aim to simplify distributed heterogeneous computing. ScalaPack libraries have
been integrated in a GrADS system developed in the project. The strategies
followed by this system are very similar, to our aims, to those of Cactus-Worm,
developed in the same project, and for this reason they are not described here.

18



8 Conclusions and Future Works

This paper presented the CAMELotGrid environment that is capable of man-
aging Cellular Grid Application according to the autonomic properties speci-
fied by the user during the problem configuration stage. It frees the applica-
tion developer from the issues related to execution and management of huge
applications distributed over heterogeneous Grid resources. The performance
model is accurate enough to identify the best virtual machine to use in the
computation. In our future work, we will use CAMELotGrid as a Grid service
within a Grid-portal for geoprocessing applications. We also plan to include
in our system the micro-benchmarks tools of the GridBench suite [9] in order
to better estimate the main parameters of the computational resource nodes.
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