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Abstract- This paper presentsa study that evaluates
the influence of the parallel geneticprogramming (GP)

models in maintaining diversity in a population. The
parallel modelsusedare the cellular and the multipop-

ulation one. Sereral measures of diversity are consid-
ered to gain a deeperunderstanding of the conditions
under which the evolution of both modelsis successful.
Threestandard test problemsare usedto illustrate the
differ ent diversity measuresand analyzetheir correla-
tion with performance. Results show that diversity is
not necessarilysynonymof good corvergence.

1 Intr oduction

Oneof the major shortcoming®f standardevolutionaryal-
gorithms(EAS) s their inability to maintaindiversityin the
population. This lack of diversity canleadto a numberof
problemssuchasconverging to a non-globaloptimaor not
beingableto reactto changesn the environment.Thelack
of diversityis especiallyevidentwhendealingwith multi-
modal problemsor whenusing evolutionary algorithmsto
solve dynamicproblems.

In Genetic Programming(GP), the processcorverges
whenthe elementsf the phenotypicpool areidentical, or
nearlyso,in spiteof the factthatthe genotypicpool might
still presentsomesyntacticaldiversity Whenthis occurs,
the crossw@er operatorceasego producenew individuals,
andthe algorithmallocatesall of its trials in a very small
subsetof the programspace.Unfortunately this often oc-
cursbeforethe true optimum hasbeenfound; this beha-
ior is calledprematurecorvergence . The mutationoperator
providesamechanisnior reintroducindostdiversity, but it
doesit atthe costof slowing down thelearningprocess.

Both genotypicand phenotypicdiversity play a role in
GP andthetwo arenot necessarilycorrelatedn a straight-
forward manner In particular the phenomenomf "bloat”,
consistingn thetendeng of codeto grow in sizeover gen-
erationis well-known, andit often givesriseto large non-
functionaltreeportionsthatcouldincreasegenotypicdiver
sity but not the phenotypicone, nor the capability of the
systemto producebettersolutions.

Many approacheshave been proposedfor diversity
maintenancevithin apopulation.Amongthemfitnessshar
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ing [5, 6] works with the ideaof similarity betweenindi-
viduals,thusrequiringa consistentlistancemeasuren the
population,andmulti-objective optimization[4], wherefit-
nessgsizeanddiversityarethe objectivesto besatisfied.

However, diversity in parallel GP modelshasbeenlit-
tle studied. Onesuchstudycanbe foundin [12] wherea
systematiexperimentalinvestigationof how a multipopu-
lation GP model helpsin maintainingthe phenotypicand
genotypicdiversityis presented.

In this work, we extend the previous analysison mul-
tipopulation GP model with additional experiments,new
analysis,and nev measures.We also study the diversity
in thecellularGPmodel. An interestingaspecbf theparal-
lel approachess thatdiversityin bothmodelsis maintained
withoutary particularalgorithmbeyondthesimplecommu-
nicationamongislandor the diffusion principle of cellular
systems.

The paperis organizedasfollows. Section2 presentsa
classificatiorof the parallel GP modelsand providessome
informationontheir parallelimplementatioron distributed-
memory computers. Section3 presentsthe different di-
versity measuresisedfor both modelsandthoseonly for
the cellular model. Section4 describesthe benchmark
problemsusedand the experimentalresultsobtained. Fi-
nally, section5 providesthe conclusionsanddiscussesu-
turework.

2 Parallel GeneticProgramming Models

Several approachedor speeding-upthe GP implementa-
tions have beenrecentlyproposed. They are directedto-
wardstwo orthogonaldirections:speeding-ugy minimiz-
ing the computationakffort of GP, andimproving the nu-
merical performanceof the algorithmitself by using pop-
ulation structuringprinciples. A classificationof the ap-
proachedor parallelizing GP includesthree main models
[16]: the global model,the coarse-gained(island) model
[13] and the fine-grained (also called cellular or grid)
model[14]. In the following we consideronly the island
andthecellularmodels.

Theislandmodeldividesa population? of M individ-
ualsinto N subpopulationd?, ..., Py, calleddemes, of
M/N individuals. A standardgyeneticprogrammingalgo-



rithm works on eachdemeandis responsibldor initializ-
ing, evaluatingand evolving its own subpopulation.Sub-
populationsareinterconnectegccordingto differentcom-
municationtopologiesand can exchangeinformation peri-
odically by migrating individualsfrom onesubpopulation
to another The numberof individualsto migrate (migra-
tion rate), the numberof generationsfterwhich migration
shouldoccur (frequency, the migration topology and the
numberof subpopulationsireall parametersf themethod
thathave to beset.

In [7] a systematiexperimentainvestigationof the be-
havior of semi-isolategopulationsgn GPis presentedThe
modelimplementedconsistoof demeghatevolve indepen-
dently with the sameparametersas panmictic GP, except
for themigrationof the bestp individualseveryt iterations
from agivenislandto arandomlychoseronedifferentfrom
itself, wherethey replaceheworstp individuals.All theex-
perimentsshaved that p= 10% of the populationsize,and
t=10 aresuitablevaluesandthusthey areusedin thiswork.
Sendingand receving blocks of individualsis done syn-
chronously Empirically, it hasbeenobsenedin [7], aswell
asin otherstudies,that distributing the individualsamong
several loosely connectedslandshasthe advantageto go
beyond the obvious time savings whenthe systemrunson
multiple machinessinceoftenmultiple populatioralsolead
to statisticallysignificantlybettersolutionquality.

In the cellularmodeleachindividualis associateavith a
spatiallocationon a low-dimensionalyrid. The population
is consideredasa systemof active individualsthatinteract
only with their direct neighbors. Differentneighborhoods
canbe definedfor the cells. The mostcommonneighbor
hoodsin the two-dimensionatasearethe 5-neighbor(von
Neumanmeighborhooglconsistingof thecell itself plusthe
North, South,East,Westneighborsand9-neighbor{Moore
neighborhoodlconsistingof the sameneighborsaugmented
with the diagonalneighbors.Fitnessevaluationis donesi-
multaneouslyor all theindividualsandselectionreproduc-
tion andmatingtake placelocally within the neighborhood.
Information slowly diffusesacrossthe grid giving rise to
the formationof semi-isolatedichesof individualshaving
similar characteristicsThe choiceof theindividual to mate
with the centralindividual andthe replacementf the latter
with oneof theoffspringcanbe donein severalways.

A scalableimplementationof the cellular GP model,
calledCAGE, is describedn [9].

CAGE is fully distributed with no needof ary global
control structureand it is naturally suitedfor implemen-
tation on parallel computers. It introducesfundamental
changedn the way GP works. In the model, the individ-
ualsof the populationare locatedon a specificpositionin
atoroidal2-D grid andthe selectionandmatingoperations
are performed,cell by cell, only amongthe individual as-
signedto a cell andits neighbors.Threereplacemenpoli-

cieshave beenimplementeddirect(thebestof theoffspring

alwaysreplacethe currentindividual), greedy(the replace-
mentoccursonly if offspringis fitter) andprobabilistic(the
replacemenhappensaccordingto differenceof the fithess
betweenparentand offspring). Experimentalresultson a

variety of benchmarkproblemshave substantiatedhe va-

lidity of the cellular modelover both the islandmodeland

panmicticGPmodel.In [8] it is shavedthat CAGE canre-

ducethe bloat phenomenoiif usedfor classificationprob-

lems

3 Diversity Measures

Suneys of diversity measuresn panmicticGP have been
presentedn [1, 2]. The diversity measureshatwe usein
this paperare basedon the conceptsof entropy and vari-
ance Both theseconceptare usedto measurehe pheno-
typic (i.e. basedn fitness)andgenotypic(i.e. basedn the
syntacticaktructureof individuals)diversityof populations.
Besideswe useanothemeasureghattakesinto accounthe
spatialstructureof the population denotedasthe frequency
of transitionintroducedin [3], thatis meaningfulonly for
the cellular model. Phenotypicdiversity is relatedto the
numberof differentfitnessvaluesof theindividuals. Here
we usethe phenotypicentopy H,(P) [15] of a population
P asadiversitymeasure:

H,(P) ==Y f;log(s;)

where f; is the fraction n; /N of individualsin P having
fithessj andN is the numberof fitnessvaluesin P.

Here we usethe entropy as a genotypicdiversity mea-
sure. To be ableto definestructuraldiversity amongtrees,
it is first usefulto definea tree distancemeasure.A few
treedistanceave beenproposedn the literature. We use
Ekart'sandNémeths definition [6]. The distancebetween
two treesT; andTs is calculatedn threesteps:(1) T and
T, areoverlappedattherootnodeandtheprocesss applied
recursvely startingfrom theleftmostsubtrees(2) For each
pair of nodesat matchingpositions,the differenceof their
codeg(possiblyraisedto anexponent)is computed(3) The
differencescomputedn the previous stepare combinedin
aweightedsum. Formally, the distanceof two treesT; and
T with roots R, and R, is definedasfollows:

1 & '
dist(Ty, Ty) = d(R, R2)+E2dist(childi(R1), child;(Ry))
i=1
where: d(R1,Rz2) = (|c(R1) — ¢(R2)|)?, child;(Y) is
the it of the m possiblechildrenof a genericnodeY’, if
i < m, or the empty tree otherwise,and ¢ evaluatedon



the root of an emptytreeis 0. Constantk is usedto give
different weights to nodesbelonging to different levels
andz is aconstanusuallychoserin suchawaythatz € V.

The genotypicentropy H,(P) of a populationP is de-
finedasfollows:

N
H,(P) = - Z g;log(g;)

where, g; is the fraction of individualshaving a given dis-
tancefrom the origin, which hasarbitrarily beenchoseras
theemptytree.

Thevarianceof a populationP is definedasfollows:

VP) = Y (-

If we areconsideringphenotypicvariance.f is the average
fitnessof the individualsin P, f; is the fitnessof the it*
individual in P andn is the total numberof individualsin
P. To definegenotypicvariance we usethe notion of tree
distance.In this case,f is the averageof all the individual
distancedrom the origin tree, f; is the distanceof the i**
individualin P from theorigin treeandn is thetotal num-
ber of individualsin P. Thenthe standarddeviation is the
squareoot of thevariance.

The frequeng of transitionof a population P regards
only the cellular modelandit is definedasthe numberof
bordersbetweerhomogeneoublocksof cells(individuals)
having thesamegenotypgphenotype)dividedby thenum-
berof distinctcouplesof adjacentells,i. e. theprobability
thattwo adjacentellsbelongto differentblocks:

n

S Ui # 1]

i=1 jEN(3)
Y INGY I
where[f; # f;]is1if f; # f;, otherwiseis 0, and N (3)

is the neighborhoodf individual i, where f; hasthe same
meaningof the f; introducedfor thevariance.

ft(p) =

4 Experiments

In thisanalysighreewell know problemsthe Even4-Parity
problem the SymbolidRegressiomproblemandtheArtificial

Antonthe SantaFetrail problem([10, 11]), areconsidered.

The parity problemtakes an input of 4 Booleanvariables
andit returnsTRUE only if an even numberof variables
is true. The even 4-parity fithessis the numberof wrong
guessefor the2* combination®f 4-bitlengthstrings.Thus
aperfectindividual hasfitness0, while theworstindividual
hasfitnessl16.

The SymbolicRegressiorproblemconsistdn searching
a programwhich matchesa givenequation,n our casethe
polynomialequationf(z) = z*+2°®+xz2?+2. Theinputset
is composeaf thevaluesO to 999 (1000fitnesscases)and
the setof functionsusedfor GP individualsis F={*//,+,-
}, where// is like / but returns0 insteadof error whenthe
divisor is equalto 0. The fitnessis the sumof the square
errorsat eachtestpoint.

In the Artificial Ant Problemon the SantaFe Trail the
goalis to find the beststratayy for picking up food pellets
alongatrail ona32 x 32 toroidalgrid. We usethe sameset
of functionsandterminalsasin [10]. Thefitnessfunctionis
thenumberof pelletsmissedby theantduring his path.

In all the experimentswe use the sameset of GP pa-
rameters:generationalGP, crosseer rate: 95%, mutation
rate: 0.1%, tournamentselectionof size: 10, rampedhalf
and half initialization, maximum depthof individuals for
the creationphase: 6, maximum depth of individuals for
crosswer: 17, elitism (i.e. survival of the bestindividual
into the newly generategopulationfor panmicticpopula-
tions. The samewas done for eachsubpopulationn the
distributed caseandin the cellular case). The size of the
populatiorwassetto 500for theeven4-parityproblem,250
for theregressiorone,andto 1000for the antproblem.We
next presenthe resultsof our simulations.The curvesrep-
resentaveragevaluesover 100independenGP runs. Note
thatthesepopulationsizeshave beenfoundsuitablein [12],
wherethe sizing of theislandshasbeenthoroughlystudied
empirically.

4.1 PhenotypicDiversity Behavior

We first discussthe phenotypicbehavior. Figure 1 shavs
thephenotypicentropy for thethreetestproblems.Entropy
[15] representshe amountof disorderof the population,
thuslow entropy meandow diversity However, sincethe
phenotypicmeasurecompareghe numberof differentfit-
nessvaluesit couldbeinterpretedasthe numberof groups
having the samefitnessvalue. Thushigh entropy could be
consideredsthepresencén the populationof a highnum-
ber of small groupsof individuals, eachgroup having the
samefitnessvalue, while low entropy would meana low
numberof large groupsof individuals.

In this perspectie, the fact that the cellular model has
alwaysa lower phenotypicentrogy with respecto boththe
islandandthe panmicticmodels asfigure 1 pointsout, can
be interpretedas the presencen the populationof a low
numberof groupseachcontainingmary individualshaving
the samefitnessvalue. This is confirmedby the low phe-
notypic standarddeviation of the cellular modelshown in
figure 3 and by the frequeng of transition,shavn in fig-
ure 2 which countsthe numberof individuals having the
samdfitnessvaluewith their neighborhoodsThejiggedbe-
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Figure1: Phenotypicentropy for the artificial ant problem
(a), the even 4 parity problem(b), the symbolicregression
problem(c).

havior of the curvesreferringto the subpopulationsn the
islandmodelis dueto the suddernchangen diversitywhen
thenew individualsenterthe populationat fixed generation
numbers.

Low phenotypicdiversity in the cellular model can be
explainedby thediffusionof theinformationacrosghegrid
that inducesgroupsof individuals having similar charac-
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Figure2: Phenotypidransitionfunctionfor theartificial ant
problem (a), the even 4 parity problem (b), the symbolic
regressiorproblem(c).

teristics. It is worth to point out that low phenotypicen-
tropy doesnot imply worst corvergenceof the method. In
fact, thoughthe figure shavs the experimentsfor 200 gen-
erations,actually the samenearoptimal fithessvalue was
foundatapproximatvely generation80, 150,250by using
the cellular, island and panmictic modelsrespectiely for
the ant problem,at generation00, 150, 200 for the par
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Figure3: Phenotypictandardieviation for theartificial ant
problem (a), the even 4 parity problem (b), the symbolic
regressiorproblem(c).

ity problem,andat generationd 0, 20, 50 for the symbolic
regressiorproblem.

4.2 Genotypic Diversity Behavior

As in the caseof phenotypicentropy, figure 4 shows that
genotypicentrogy is lower for the cellular modelwith re-
spectto boththeislandandthe panmicticones while geno-
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Figure4: Genotypicentroyy for the artificial ant problems
(a), the even 4 parity problem(b), the symbolicregression
problem(c).

typic entroyy for theislandmodelis almostthe sameof the
panmicticmodelfor antandparity problemsandlower for
symbolicregression.

This behaior suggeststhat, as regards the cellular
model,we have few groupsof individualshaving the same
distancefrom the emptytree, eachgroup beingcomposed
by mary trees. However, as figure 5 suggeststreesin
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Figure5: Genotypicstandardieviation for the artificial ant
problem (a), the even 4 parity problem (b), the symbolic
regressiorproblem(c).

the populationarevery dissimilaramongthembecausehe
standarddeviation is high, thus the distanceof eachtree
from the origin tree is substantiallydifferentfrom the av-
eragedistanceof all the treesfrom the origin tree. High
diversityin thetreestructureis confirmedby the genotypic
transitionfunctionwhich, asfigure 6 shavs, maintainsval-
uesneartheoptimum,thatis 1, duringtheevolutionarypro-
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Figure6: Genotypictransitionfunctionfor the artificial ant
problem (a), the even 4 parity problem (b), the symbolic
regressiorproblem(c).

cess.
Having high genotypic diversity and low phenotypic
diversity in the cellular model could seemcontradictory
However this apparentconflicting behaior can be ex-
plainedby the factthatthoughthetreesarestructurallydif-
ferent,this doesnot imply thattheir fithessmustbe differ-
enttoo. In thecellularcasdat meanghatalmostall thetrees



have goodfitnessvaluesandthis explainsthe bettercorver-
genceof the cellularmodel.

5 Conclusions

The paperanalyzedhe phenotypicandgenotypicdiversity
of a populationin the island and cellular parallel genetic
programmingnodelswith respecto thepanmicticone.The

experimentshovedthat,asregardthe phenotypidiversity,

the cellular modelpresents lower valuethanthe panmic-
tic one,while theislandmodelpresentanhighervaluethan
thepanmicticmodel.In ary casehecornvergenceof cellular
andislandmodelsis faster Thusa diversitymeasuréased
on fithessof individualsdoesnot seemto give enoughin-

formationto infer that higher phenotypicdiversity implies
betterperformance.Genotypicdiversity is againlower in

the cellular modeland almostthe samefor the island and
panmicticmodels. However, in sucha case the genotypic
standarddeviationis higherfor boththe cellularandisland
models. This impliesthatthe treesaremuchmoredissim-
ilar andthis dissimilarity could explain the fastercorver

genceof the parallelmodels. The study thus pointedout

thatdiversity doesnot necessarilymeanghatthe systemis

capableto obtainfitter solutions. Futurework aimsat con-
sideringnew diversity measuresandat a thoroughinvesti-
gationandfurther experimentson more problemsto find a
tight correlationbetweerdiversityandperformance.
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