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Abstract- This paper presentsa study that evaluates
the influence of the parallel geneticprogramming (GP)
models in maintaining diversity in a population. The
parallel modelsusedare the cellular and the multipop-
ulation one. Several measuresof diversity are consid-
ered to gain a deeper understanding of the conditions
under which the evolution of both modelsis successful.
Thr eestandard test problemsare usedto illustrate the
differ ent diversity measuresand analyze their correla-
tion with performance. Results show that diversity is
not necessarilysynonymof goodconvergence.

1 Intr oduction

Oneof themajorshortcomingsof standardevolutionaryal-
gorithms(EAs) is their inability to maintaindiversityin the
population. This lack of diversitycanleadto a numberof
problemssuchasconverging to a non-globaloptimaor not
beingableto reactto changesin theenvironment.Thelack
of diversity is especiallyevidentwhendealingwith multi-
modalproblemsor whenusingevolutionaryalgorithmsto
solvedynamicproblems.

In GeneticProgramming(GP), the processconverges
whenthe elementsof the phenotypicpool areidentical,or
nearlyso, in spiteof thefact that thegenotypicpool might
still presentsomesyntacticaldiversity. Whenthis occurs,
the crossover operatorceasesto producenew individuals,
andthe algorithmallocatesall of its trials in a very small
subsetof the programspace.Unfortunately, this often oc-
cursbeforethe true optimumhasbeenfound; this behav-
ior is calledprematureconvergence.Themutationoperator
providesamechanismfor reintroducinglostdiversity, but it
doesit at thecostof slowing down thelearningprocess.

Both genotypicandphenotypicdiversity play a role in
GPandthetwo arenot necessarilycorrelatedin a straight-
forwardmanner. In particular, thephenomenonof ”bloat”,
consistingin thetendency of codeto grow in sizeovergen-
erationis well-known, andit oftengivesrise to largenon-
functionaltreeportionsthatcouldincreasegenotypicdiver-
sity but not the phenotypicone, nor the capability of the
systemto producebettersolutions.

Many approacheshave been proposedfor diversity
maintenancewithin apopulation.Amongthemfitnessshar-

ing [5, 6] works with the ideaof similarity betweenindi-
viduals,thusrequiringa consistentdistancemeasurein the
population,andmulti-objectiveoptimization[4], wherefit-
ness,sizeanddiversityaretheobjectivesto besatisfied.

However, diversity in parallelGP modelshasbeenlit-
tle studied. Onesuchstudycanbe found in [12] wherea
systematicexperimentalinvestigationof how a multipopu-
lation GP model helpsin maintainingthe phenotypicand
genotypicdiversityis presented.

In this work, we extend the previous analysison mul-
tipopulationGP model with additional experiments,new
analysis,and new measures.We also study the diversity
in thecellularGPmodel.An interestingaspectof theparal-
lel approachesis thatdiversityin bothmodelsis maintained
withoutany particularalgorithmbeyondthesimplecommu-
nicationamongislandor thediffusionprincipleof cellular
systems.

Thepaperis organizedasfollows. Section2 presentsa
classificationof theparallelGPmodelsandprovidessome
informationontheirparallelimplementationondistributed-
memory computers. Section3 presentsthe different di-
versity measuresusedfor both modelsand thoseonly for
the cellular model. Section 4 describesthe benchmark
problemsusedand the experimentalresultsobtained. Fi-
nally, section5 providesthe conclusionsanddiscussesfu-
turework.

2 Parallel GeneticProgramming Models

Several approachesfor speeding-upthe GP implementa-
tions have beenrecentlyproposed. They are directedto-
wardstwo orthogonaldirections:speeding-upby minimiz-
ing the computationaleffort of GP, andimproving the nu-
mericalperformanceof the algorithmitself by usingpop-
ulation structuringprinciples. A classificationof the ap-
proachesfor parallelizingGP includesthreemain models
[16]: theglobal model,thecoarse-grained( �������
	�� ) model
[13] and the fine-grained (also called cellular or grid)
model [14]. In the following we consideronly the island
andthecellularmodels.

The islandmodeldividesa population of � individ-
uals into � subpopulations����������������� , called ��������� , of� / � individuals. A standardgeneticprogrammingalgo-



rithm works on eachdemeandis responsiblefor initializ-
ing, evaluatingandevolving its own subpopulation.Sub-
populationsareinterconnectedaccordingto differentcom-
municationtopologiesandcanexchangeinformationperi-
odicallyby ���! #"��
$%�&	' individualsfrom onesubpopulation
to another. The numberof individuals to migrate(migra-
tion rate), thenumberof generationsafterwhich migration
shouldoccur (frequency), the migration topology and the
numberof subpopulationsareall parametersof themethod
thathave to beset.

In [7] a systematicexperimentalinvestigationof thebe-
havior of semi-isolatedpopulationsin GPis presented.The
modelimplementedconsistsof demesthatevolve indepen-
dently with the sameparametersas panmicticGP, except
for themigrationof thebestp individualsevery t iterations
from agivenislandto arandomlychosenonedifferentfrom
itself,wherethey replacetheworstp individuals.All theex-
perimentsshowed that p= (�)
* of the populationsize,and
t= (�) aresuitablevalues,andthusthey areusedin thiswork.
Sendingand receiving blocks of individuals is donesyn-
chronously. Empirically, it hasbeenobservedin [7], aswell
asin otherstudies,that distributing the individualsamong
several looselyconnectedislandshasthe advantageto go
beyond the obvious time savings whenthe systemrunson
multiplemachines,sinceoftenmultiplepopulationalsolead
to statisticallysignificantlybettersolutionquality.

In thecellularmodeleachindividual is associatedwith a
spatiallocationon a low-dimensionalgrid. Thepopulation
is consideredasa systemof active individualsthat interact
only with their direct neighbors.Differentneighborhoods
canbe definedfor the cells. The mostcommonneighbor-
hoodsin the two-dimensionalcasearethe5-neighbor(von
Neumannneighborhood) consistingof thecell itself plusthe
North,South,East,Westneighborsand9-neighbor(Moore
neighborhood) consistingof thesameneighborsaugmented
with thediagonalneighbors.Fitnessevaluationis donesi-
multaneouslyfor all theindividualsandselection,reproduc-
tion andmatingtakeplacelocally within theneighborhood.
Information slowly diffusesacrossthe grid giving rise to
theformationof semi-isolatednichesof individualshaving
similar characteristics.Thechoiceof theindividual to mate
with thecentralindividualandthereplacementof thelatter
with oneof theoffspringcanbedonein severalways.

A scalableimplementationof the cellular GP model,
calledCAGE, is describedin [9].

CAGE is fully distributed with no needof any global
control structureand it is naturally suited for implemen-
tation on parallel computers. It introducesfundamental
changesin the way GP works. In the model, the individ-
ualsof the populationarelocatedon a specificpositionin
a toroidal2-D grid andtheselectionandmatingoperations
areperformed,cell by cell, only amongthe individual as-
signedto a cell andits neighbors.Threereplacementpoli-

cieshavebeenimplemented:direct(thebestof theoffspring
alwaysreplacethecurrentindividual), greedy(thereplace-
mentoccursonly if offspringis fitter) andprobabilistic(the
replacementhappensaccordingto differenceof the fitness
betweenparentandoffspring). Experimentalresultson a
variety of benchmarkproblemshave substantiatedthe va-
lidity of the cellularmodelover both the islandmodeland
panmicticGPmodel.In [8] it is showedthatCAGE canre-
ducethe bloat phenomenonif usedfor classificationprob-
lems

3 Diversity Measures

Surveys of diversity measuresin panmicticGP have been
presentedin [1, 2]. The diversity measuresthat we usein
this paperare basedon the conceptsof entropy and vari-
ance. Both theseconceptsareusedto measurethe pheno-
typic (i.e. basedon fitness)andgenotypic(i.e. basedon the
syntacticalstructureof individuals)diversityof populations.
Besides,weuseanothermeasurethattakesinto accountthe
spatialstructureof thepopulation,denotedasthefrequency
of transition introducedin [3], that is meaningfulonly for
the cellular model. Phenotypicdiversity is relatedto the
numberof differentfitnessvaluesof the individuals. Here
we usethephenotypicentropy +-,/.!�10 [15] of a population� asa diversitymeasure:

+ , .��103254 �67�8 �'9 7�:<;>= . 9 7 0
where 9 7 is the fraction 	 7@? � of individuals in � having
fitnessA and � is thenumberof fitnessvaluesin � .

Herewe usethe entropy asa genotypicdiversity mea-
sure. To beableto definestructuraldiversityamongtrees,
it is first useful to definea tree distancemeasure.A few
treedistanceshave beenproposedin the literature.We use
Ekárt’s andNémeth’s definition [6]. Thedistancebetween
two treesBC� and B'D is calculatedin threesteps:(1) BC� andBED areoverlappedat therootnodeandtheprocessis applied
recursively startingfrom theleftmostsubtrees.(2) For each
pair of nodesat matchingpositions,the differenceof their
codes(possiblyraisedto anexponent)is computed.(3) The
differencescomputedin theprevioussteparecombinedin
a weightedsum.Formally, thedistanceof two treesB � andB D with roots F � and F D is definedasfollows:

�>����$G.HBC����BED�032I�J.!FK�L��FMD�0ON (P QR6 S 8 � �>����$G.�T�UV�%���
S .!FK��0W�OT�UX�%�!� S .!FYD@0Z0

where: �J.!FK�L��FMD�0I2[.�\ TL.�F]��0145TL.!FYD@0�\ 0�^ , T�UX�%�!� S .!_`0 is
the �&a�b of the � possiblechildrenof a genericnode _ , if�dce� , or the empty tree otherwise,and T evaluatedon



the root of an empty treeis ) . Constant
P

is usedto give
different weights to nodesbelonging to different levels
and f is aconstantusuallychosenin suchawaythat fhghi .

The genotypicentropy +kj/.��10 of a population � is de-
finedasfollows:

+kj#.��10l254 �67�8 �  7E:<;>= .H 7 0
where,  7 is the fraction of individualshaving a givendis-
tancefrom theorigin, which hasarbitrarily beenchosenas
theemptytree.

Thevarianceof apopulation� is definedasfollows:m .��10n2 (	
o6 S 8 � . 9

S 4 9 0 D
If we areconsideringphenotypicvariance,9 is theaverage
fitnessof the individuals in � , 9

S
is the fitnessof the �pa�b

individual in � and 	 is the total numberof individualsin� . To definegenotypicvariance,we usethenotionof tree
distance.In this case,9 is theaverageof all the individual
distancesfrom the origin tree, 9

S
is the distanceof the �pa�b

individual in � from theorigin treeand 	 is thetotal num-
berof individualsin � . Thenthe standarddeviation is the
squareroot of thevariance.

The frequency of transitionof a population � regards
only the cellular modeland it is definedasthe numberof
bordersbetweenhomogeneousblocksof cells(individuals)
having thesamegenotype(phenotype),dividedby thenum-
berof distinctcouplesof adjacentcells,i. e. theprobability
thattwo adjacentcellsbelongto differentblocks:

9 $G.!�1032
o6 S 8 � 67Gq �Yr S<s�t 9

Svu2 9 7Gwx oS 8 �]y �z.���0 y
where

t 9
S{u2 9 7Gw is 1 if 9

S|u2 9 7 , otherwiseis 0, and �}.H��0
is theneighborhoodof individual i, where 9

S
hasthe same

meaningof the 9
S
introducedfor thevariance.

4 Experiments

In thisanalysisthreewell know problems,theEven4-Parity
problem, theSymbolicRegressionproblemandtheArtificial
AntontheSantaFetrail problem([10, 11]), areconsidered.
The parity problemtakesan input of 4 Booleanvariables
and it returnsTRUE only if an even numberof variables
is true. The even 4-parity fitnessis the numberof wrong
guessesfor the ~�� combinationsof 4-bit lengthstrings.Thus
aperfectindividualhasfitness) , while theworstindividual
hasfitness(�� .

TheSymbolicRegressionproblemconsistsin searching
a programwhich matchesa givenequation,in our casethe
polynomialequation9 .���0l2��V�XNk���#Nk� D Nk� . Theinputset
is composedof thevalues0 to 999(1000fitnesscases),and
the setof functionsusedfor GP individuals is F=

�
*,//,+,-� , where// is like / but returns0 insteadof error whenthe

divisor is equalto 0. The fitnessis the sumof the square
errorsat eachtestpoint.

In the Artificial Ant Problemon the SantaFe Trail the
goal is to find the beststrategy for picking up food pellets
alongatrail ona �
~M�{��~ toroidalgrid. Weusethesameset
of functionsandterminalsasin [10]. Thefitnessfunctionis
thenumberof pelletsmissedby theantduringhispath.

In all the experimentswe usethe sameset of GP pa-
rameters:generationalGP, crossover rate: �
� %, mutation
rate: )V��( %, tournamentselectionof size: (�) , rampedhalf
and half initialization, maximumdepthof individuals for
the creationphase: � , maximumdepthof individuals for
crossover: (@� , elitism (i.e. survival of the bestindividual
into the newly generatedpopulationfor panmicticpopula-
tions. The samewas donefor eachsubpopulationin the
distributedcaseand in the cellular case). The sizeof the
populationwassetto 500for theeven4-parityproblem,250
for theregressionone,andto 1000for theantproblem.We
next presenttheresultsof our simulations.Thecurvesrep-
resentaveragevaluesover 100independentGPruns. Note
thatthesepopulationsizeshavebeenfoundsuitablein [12],
wherethesizingof theislandshasbeenthoroughlystudied
empirically.

4.1 PhenotypicDiversity Behavior

We first discussthe phenotypicbehavior. Figure1 shows
thephenotypicentropy for thethreetestproblems.Entropy
[15] representsthe amountof disorderof the population,
thuslow entropy meanslow diversity. However, sincethe
phenotypicmeasurecomparesthe numberof differentfit-
nessvalues,it couldbeinterpretedasthenumberof groups
having thesamefitnessvalue. Thushigh entropy couldbe
consideredasthepresencein thepopulationof ahighnum-
ber of small groupsof individuals,eachgrouphaving the
samefitnessvalue, while low entropy would meana low
numberof largegroupsof individuals.

In this perspective, the fact that the cellular modelhas
alwaysa lower phenotypicentropy with respectto boththe
islandandthepanmicticmodels,asfigure1 pointsout, can
be interpretedas the presencein the populationof a low
numberof groupseachcontainingmany individualshaving
the samefitnessvalue. This is confirmedby the low phe-
notypic standarddeviation of the cellular modelshown in
figure 3 andby the frequency of transition,shown in fig-
ure 2 which countsthe numberof individuals having the
samefitnessvaluewith theirneighborhoods.Thejiggedbe-
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Figure1: Phenotypicentropy for the artificial ant problem
(a), the even4 parity problem(b), the symbolicregression
problem(c).

havior of the curvesreferringto the subpopulationsin the
islandmodelis dueto thesuddenchangein diversitywhen
thenew individualsenterthepopulationat fixedgeneration
numbers.

Low phenotypicdiversity in the cellular model can be
explainedby thediffusionof theinformationacrossthegrid
that inducesgroupsof individuals having similar charac-
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Figure2: Phenotypictransitionfunctionfor theartificial ant
problem(a), the even 4 parity problem(b), the symbolic
regressionproblem(c).

teristics. It is worth to point out that low phenotypicen-
tropy doesnot imply worst convergenceof themethod. In
fact, thoughthefigureshows theexperimentsfor 200gen-
erations,actually the samenearoptimal fitnessvaluewas
foundatapproximativelygenerations80,150,250by using
the cellular, island and panmicticmodelsrespectively for
the ant problem,at generations200, 150, 200 for the par-
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Figure3: Phenotypicstandarddeviationfor theartificial ant
problem(a), the even 4 parity problem(b), the symbolic
regressionproblem(c).

ity problem,andat generations10, 20, 50 for thesymbolic
regressionproblem.

4.2 GenotypicDiversity Behavior

As in the caseof phenotypicentropy, figure 4 shows that
genotypicentropy is lower for the cellular modelwith re-
spectto boththeislandandthepanmicticones,while geno-
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Figure4: Genotypicentropy for theartificial antproblems
(a), theeven4 parity problem(b), thesymbolicregression
problem(c).

typic entropy for theislandmodelis almostthesameof the
panmicticmodelfor antandparity problems,andlower for
symbolicregression.

This behavior suggeststhat, as regards the cellular
model,we have few groupsof individualshaving thesame
distancefrom the emptytree,eachgroupbeingcomposed
by many trees. However, as figure 5 suggests,trees in
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Figure5: Genotypicstandarddeviation for theartificial ant
problem(a), the even 4 parity problem(b), the symbolic
regressionproblem(c).

thepopulationarevery dissimilaramongthembecausethe
standarddeviation is high, thus the distanceof eachtree
from the origin tree is substantiallydifferent from the av-
eragedistanceof all the treesfrom the origin tree. High
diversityin thetreestructureis confirmedby thegenotypic
transitionfunctionwhich,asfigure6 shows,maintainsval-
uesneartheoptimum,thatis 1, duringtheevolutionarypro-
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Figure6: Genotypictransitionfunctionfor theartificial ant
problem(a), the even 4 parity problem(b), the symbolic
regressionproblem(c).

cess.
Having high genotypic diversity and low phenotypic

diversity in the cellular model could seemcontradictory.
However this apparentconflicting behavior can be ex-
plainedby thefactthatthoughthetreesarestructurallydif-
ferent,this doesnot imply that their fitnessmustbediffer-
enttoo. In thecellularcaseit meansthatalmostall thetrees



havegoodfitnessvaluesandthisexplainsthebetterconver-
genceof thecellularmodel.

5 Conclusions

Thepaperanalyzedthephenotypicandgenotypicdiversity
of a populationin the island and cellular parallel genetic
programmingmodelswith respectto thepanmicticone.The
experimentsshowedthat,asregardthephenotypicdiversity,
thecellularmodelpresentsa lower valuethanthepanmic-
tic one,while theislandmodelpresentsanhighervaluethan
thepanmicticmodel.In any casetheconvergenceof cellular
andislandmodelsis faster. Thusa diversitymeasurebased
on fitnessof individualsdoesnot seemto give enoughin-
formationto infer that higherphenotypicdiversity implies
betterperformance.Genotypicdiversity is againlower in
the cellular modelandalmostthe samefor the islandand
panmicticmodels.However, in sucha case,the genotypic
standarddeviation is higherfor boththecellularandisland
models.This implies that the treesaremuchmoredissim-
ilar and this dissimilarity could explain the fasterconver-
genceof the parallelmodels. The study thus pointedout
thatdiversitydoesnot necessarilymeansthat thesystemis
capableto obtainfitter solutions.Futurework aimsat con-
sideringnew diversitymeasures,andat a thoroughinvesti-
gationandfurtherexperimentson moreproblemsto find a
tight correlationbetweendiversityandperformance.
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[6] Anikó Ekárt andSandorZ. Németh.Maintainingthediver-
sityof geneticprograms.LectureNotesin ComputerScience,
EuroGP2002, 2278:162–171,2002.

[7] FranciscoFernandez,MarcoTomassini,andLeonardoVan-
neschi. An empiricalstudyof multipopulationgeneticpro-
gramming.GeneticProgrammingandEvolvableMachines,
4(1):21–51,March2003.

[8] G. Folino, C. Pizzuti, andG. Spezzano.A cellular genetic
programmingapproachto classification.In Geneticandevo-
lutionary conference, GECCO99, volume 2, pages1015–
1020.MorganKaufmann,SanFrancisco,CA, 1999.

[9] G. Folino, C. Pizzuti, andG. Spezzano.A scalablecellu-
lar implementationof parallelgeneticprogramming. IEEE
TransactionsonEvolutionaryComputation, 7:37–53,Febru-
ary2003.

[10] J. R. Koza. GeneticProgramming. The MIT Press,Cam-
bridge,Massachusetts,1992.

[11] W. B. Langdonand R. Poli. Foundationsof GeneticPro-
gramming. Springer, Berlin, 2002.

[12] F. FerńandezM. Tomassini,L. VanneschiandG. Galeano.
Diversity in multipopulationgeneticprogramming. In Ge-
netic and Evolutionary ComputationConference,GECCO
2003, volume2610of LNCS. Springer-Verlag,2003.

[13] W. N. Martin, J. Lienig, andJ. P. Cohoon. Island (migra-
tion) models: evolutionaryalgorithmsbasedon punctuated
equilibria. In ThomasBäck,David B. Fogel,andZbigniew
Michalewicz, editors,Handbookof EvolutionaryComputa-
tion, pagesC6.3:1–16.Institute of PhysicsPublishingand
OxfordUniversityPress,Bristol, New York, 1997.

[14] C. C. Pettey. Diffusion(cellular)models. In ThomasBäck,
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