
Applied Soft Computing Journal 75 (2019) 284–297

Contents lists available at ScienceDirect

Applied Soft Computing Journal

journal homepage: www.elsevier.com/locate/asoc

Exploiting fractal dimension and a distributed evolutionary approach
to classify data streams with concept drifts
Gianluigi Folino ∗, Massimo Guarascio, Giuseppe Papuzzo
ICAR-CNR, Via P.Bucci 7/C, Univ. della Calabria, 87036 Rende (CS), Italy

h i g h l i g h t s

• Proposes a framework based on a
distributed GP ensemble algorithm
for coping with different types of
concept drift.

• Experiments to assess the capacity of
the framework to detect the drift and
quickly respond to it.

• The fractal-baseddrift detection strat-
egy proposed is comparable in terms
of accuracywithwell-recognizeddrift
detection algorithms.

gra ph i c a l a b s t r a c t

a r t i c l e i n f o

Article history:
Received 28 February 2018
Received in revised form 2 August 2018
Accepted 2 November 2018
Available online 15 November 2018

a b s t r a c t

Evolutionary algorithms, i.e., Genetic Programming (GP), have been successfully used for the task of
classification, mainly because they are less likely to get stuck in the local optimum, can operate on chunks
of data and allow to compute more solutions in parallel. Ensemble techniques are usually more accurate
than component learners constituting the ensemble and can be built in an incremental way, improving
flexibility, adapting to changes andmaintaining part of the history present in the data. This paper proposes
a framework based on a distributed GP ensemble algorithm for coping with different types of concept
drift for the task of classification of large data streams. The framework is able to detect changes in a very
efficient way using only a detection function based on the fractal dimension, which can also works on
new incoming unclassified data. Thus, a distributed GP algorithm is performed only when a change is
detected in order to improve classification accuracy and this, togetherwith the exploitation of an adaptive
procedure, permits to answer in short time to these changes. Experiments are conducted on a real and
on some artificial datasets in order to assess the capacity of the framework to detect the drift and quickly
respond to it.

© 2018 Elsevier B.V. All rights reserved.

∗ Corresponding author.
E-mail addresses: gianluigi.folino@icar.cnr.it (G. Folino),

massimo.guarascio@icar.cnr.it (M. Guarascio), giuseppe.papuzzo@icar.cnr.it
(G. Papuzzo).

1. Introduction

Nowadays, people and systems overload data centers and stor-
age systems with an exponential generation of large data streams.
This rapid growth of data is mainly due to advances in digital
sensors, computation, communications, and storage technologies

https://doi.org/10.1016/j.asoc.2018.11.009
1568-4946/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2018.11.009
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2018.11.009&domain=pdf
mailto:gianluigi.folino@icar.cnr.it
mailto:massimo.guarascio@icar.cnr.it
mailto:giuseppe.papuzzo@icar.cnr.it
https://doi.org/10.1016/j.asoc.2018.11.009


G. Folino, M. Guarascio and G. Papuzzo / Applied Soft Computing Journal 75 (2019) 284–297 285

that have created huge collections of data and, specifically, the
term Big Data is used to define this phenomenon [1].

Nevertheless, this data can be generated by several and het-
erogeneous source types. In literature, three types of providers for
Big Data and Data Streams are identified [2]. A typical example
of Human-Sourced information is represented by Social Networks,
where human experiences and interactions by means of the ac-
tions that they perform on social media daily are recorded. The
traditional business systems and websites are common providers
for Process-Mediated Sourced data (e.g. stock and foreign currency
exchange markets). These systems record and monitor business
events of interest (e.g. medical records and commercial transac-
tions). Finally, themachine-generated sourced data are produced by
automatic systems such as sensors andnetworkeddevices. The aim
of these systems is to measure and to record events in the physical
world (e.g. weather, cyber security and surveillance videos/images,
mobile tracking, energy saving systems and sensor networks).

Although semantically different, all these data exhibit an inter-
esting common feature: they have an ever-changing nature that
makes them highly difficult to analyze. For example, the pref-
erences and the interests of a person can evolve over time, the
data recorded by atmospheric sensors can quickly change during
a natural disaster and, in the same way, during a cyber attack, the
number and the types of the connections can vary just as quickly.

In all these scenarios, we believe that the capability of iden-
tifying (as soon as possible) abrupt changes in the data, in order
to determine when updating the classification/prediction models,
is a relevant and challenging problem. To this aim, we defined a
framework for coping with different types of concept drift and able
to handle large amounts of data.

1.1. Literature overview

Generally, the traditional data mining algorithms assume that
data is static, i.e., the concept to learn, described by a set of prede-
fined features, is not affected by modifications due to the external
environment changes. On the contrary, in the applications men-
tioned above, a concept may drift due to several factors, i.e., when
the underlying distribution of the data changes. It can cause a
serious degradation of the model performance; therefore its de-
tection enables the model to revise itself and promptly restore its
classification accuracy.

Several approaches have been proposed in literature to tackle
the concept drift problem [3], for example, the incremental (on-
line) systems [4,5] are able to update the underlying model as new
data instances arrive. In particular, these methods build a model
that represents the entire data stream and continuously refine
their model as data flows. On the contrary, maintaining a unique
and up-to-date model could be not a good choice, as previously
trained classifiers would be discarded and an important part of
any information could be lost. However, updating the model, as
soon as new data arrive, might not be practicable as usually the
stream of data is very fast and in many cases, it is not possible to
store all the necessary information in memory. Moreover, in many
real application scenarios, detecting and labeling new instances
is a very expensive and time-consuming task because usually it
must be performed by a human operator. A common approach to
overcome this problem is to detect the changes and to update the
model only if a concept drift happens.

Some research lines focused on ensemble learning algorithms
as an example of incremental systems and were successfully ap-
plied for classifying data streams in many difficult environments
[6–8]. The interest for these approaches is due to several reasons:
(i) they allow to improve the predictive accuracy combining sev-
eral base classifiers, (ii) they can be learnt and updated incre-
mentally and (iii) they can cope with large datasets and big data

environments by using parallel and distributed architecture and
by extracting small portions of the original dataset for training
the components of the ensemble. For instance, in [9], an approach
exploiting support vector regressors (SVR) models as predictors
is proposed for the classification of large datasets. The authors
pointed out that the SVRs may be affected from over-fitting when
they are learnt on non-uniform or imbalanced data and, to over-
come this issue, an interesting strategy to extract small training
subsets (TS), representative of the whole dataset, is presented.
This strategy could be usefully adopted in an ensemble-based
framework.

1.2. Our approach

In this work, we propose a scalable and effective approach,
based on the fractal dimension, for identifying concept drifts.
Specifically, the technique exploits the fractal dimension to pro-
vide an indicator able to measure how much the data distribution
is changed, thus to enable the drift detectionmethod (more details
will be provided in Section 5.3). Finally, when a drift is detected,
the updating phase of the classification models takes place.

Our framework dealswith the problemof the large data streams
classification where concept drifts may occur (both rarely as well
as frequently). In particular, the proposed approach employs an
ensemble of GP-Based classifiers in order to mitigate the loss of
accuracy due to the concept drift. Specifically, the ensemble of
classifiers is incrementally built by using a distributedGP-based al-
gorithm, BoostCGPC, introduced in [10]. Then, a weighting scheme
(detailed in Section 5.4) and a pruning method are used for reduc-
ing the accuracy degradation in the transitory phase after the drift
detection. The former allows to weight the base models according
to their accuracy on the new data, while the second permits the
removal of the obsolete or inaccurate ones.

A very preliminary version of the paper has been presented
in [11]; the main idea of using fractal dimension and GP is al-
ready present, but only preliminary experiments on the capacity
of fractal dimension to detect drift in artificial datasets have been
conducted. Here, we describe in detail the framework and the
software architecture and an extensive experimentation to prove
the effectiveness and the efficiency of the proposed approach is
also presented.

More in detail, the architecture of the framework consists of two
main modules: a fractal dimension-based function for detecting
concept drifts in the non-stationary phase and an ensemble of GP-
based classifiers used in the training (stationary) phase. Indeed, the
distributed GP algorithm is executed only when a change is de-
tectedwith a considerable gain in terms of efficiency. The proposed
solution allows to identify several kinds of concept drift in a small
amount of time, even for real-time data streams. To this aim, the
authors of [12] define a really efficient heuristic to compute the
fractal dimension on streaming data by using a constant amount
of memory, which could further speedup the detection phase.

Predicting when a drift can happen is a very difficult task, as the
drifts can be both really rare (e.g. the intrusion detection problem)
or very frequent (e.g. updates detection in the news flow during
unexpected events such as natural disasters). As labeling is a costly
and time-consuming operation [13], in our approach, changes are
detected only on the basis of the fractal dimension, which can be
computed directly on the new chunks of unlabeled data. The main
advantage of our approach is that labeled instances are required
onlywhen a newdrift is discovered, which can be quite infrequent.

The use of fractal dimension to detect changes in the distribu-
tion of the points of a dataset have been already studied inmachine
learning tasks [14], i.e., clustering [15] and association rules [16],
because there are many efficient algorithms for computing it and
for its capacity to identify the concept drifts. However, to the best of
our knowledge, it has not been applied to the field of classification.



286 G. Folino, M. Guarascio and G. Papuzzo / Applied Soft Computing Journal 75 (2019) 284–297

To summarize, the main contributions of this work are:

• We defined an architecture based on two main modules: a
fractal dimension-based function for detecting concept drifts
in the non-stationary phase and an ensemble of GP-based
classifiers used in the training (stationary) phase.

• Drifts can be detected quickly, while the computationally in-
tensive training phase is executed rarely (i.e., when a change
is detected) and for a limited number of windows.

• The transitory phase is handled in a cleverway: the algorithm
first responds to the drift readjusting the weights, so giving a
first quick response, then generates new models for improv-
ing the accuracy.

• A fast detection function, based on the fractal dimension, able
to quickly detect different types of drifts, is defined.

• The drift detection function is robust to noise and permits
to detect different types of drift in high-dimensional datas-
treams.

1.3. Organization of the paper

The paper is organized as follows: Section 2 reviews some
related works; Section 3 provides some background information
about distributed computing, GP and ensemble; in Section 4, the
different types of drift are analyzed and the strategies for de-
tecting changes based on the fractal dimension are discussed in
detail; Section 5 introduces the architecture of the system and
the main components for training the classifiers and detecting the
changes; Section 6 presents the experiments performed on a real
and some artificial datasets; in Section 7, the main advantages and
drawbacks of the fractal detection function and the complexity
of the re-training phase of our approach are discussed; finally,
Section 8 concludes the paper and presents some interesting future
developments.

2. Related works

Ensemble-based classification algorithms have been success-
fully exploited for the task of classifying data streams as an exam-
ple of incremental systems [17]. In fact, many papers concerning
the classification of data streams adopt the ensemble paradigm.
This choice is mainly due to the ease with which the ensemble
can be updated in order to add/remove classifiers for improving
flexibility and maintaining part of the history present in the data.
A detailed review and comparison of the main approaches for the
ensemble-based classification of data streams can be found in [18],
while in [19] the main detection drift techniques are analyzed
and compared, by remarking their advantages and drawbacks.
As for the evolutionary algorithms, they are largely used for the
classification task [20]; however, a few papers [13] also adopts the
ensemble paradigm for the data streaming task.

Here, we first review some approaches based on the ensemble
paradigm used to cope with data streams, which include a drift
detection method and present similarities with our framework,
then, we analyze the papers based on evolutionary algorithms and
finally, we analyze a few papers adopting the fractal dimension for
the task of mining data streams.

In [21], the authors propose a proactive approach specialized
for detecting abrupt drifts in large dataset, called DetectA. This
technique labels the patterns from the test set using an unsuper-
vised method; then, it compares some statistics computed on the
training and on the test set and, on the basis of the result of some
multivariate hypothesis tests, a decision is taken concerning the
presence or not of a drift. An experimentation conducted on real
and artificial datasets, prove the effectiveness of the approach to
cope with unbalanced and high-dimensional data, and to detect

abrupt drifts. The algorithm has the advantage of detecting abrupt
drifts in advance, however it is hardly applicable to real time
problems, as the detection function is computationally expensive.

Wang et al. [6] built an ensemble of classifiers maintaining
the top classifiers, i.e., the classifiers obtaining the best expected
prediction accuracy on the current chunk of data. In addition, an
instance-based pruning technique is adopted in order to reduce the
number of classifiers necessary to classify the data. Experiments
conducted on synthetic and real data sets showed that the ensem-
ble outperforms the single classifier approach in terms of accuracy
and the pruning technique reduces the number of classifiers with-
out effecting accuracy. A main drawback of the method is that it
continuously updates themodel and it does affect the performance
of the algorithm in terms of efficiency.

The approach proposed by Chu and Zaniolo [22] boosts fast
and light models for classifying data streams. In addition, the
algorithm actively detects changes and discards the old ensemble
only when a change is raised. In order to detect both abrupt and
gradual changes, a two-step statistical based technique is used.
Experiments have been conducted on synthetic datasets and on
a real life dataset demonstrating the validity of the approach in
detecting drifts.

The work described in [23] has the merit of introducing time
constraints while collecting labeled data and is also able to detect
novel classes. In fact, their realisticmodel states that the class (new
or old) of a tuple appears a time delay after the tuple itself. A new
class is detected when a sufficient number of instances are well-
separated from the training data and present strong similarities
among them. A clustering algorithm is used to detect the candidate
‘‘novel class’’ and a unified measure of cohesion and separation
establishes whether a new class is discovered. It is worthmention-
ing that this technique is orthogonal to our method and it can be
included in our algorithm.

The paper [24] describes an interesting approach for classify-
ing data streams, mainly designed to handle the case in which
labeled tuples have random frequencies and sizes in the streams.
The authors use a random forest algorithm for classifying the
stream and a detection function comparing the entropy between
the current and a reference window for detecting concept drifts.
An interesting criterion is introduced to establish when a forest
is ready for deployment, based on the margin function defined
by Breiman [25]. The experiments conducted on artificial and real
datasets confirm the goodness of the overall algorithm. Differently
from our approach, the system updates the forest as soon as new
labeled data arrives and not only when a new drift happens;
furthermore, its implementation does not exploit the power of
distributed architectures. In spite of it being very efficient, it would
not be suitable to cope with very fast streams due to these limita-
tions.

Alippi et al. [26] extend a previous system, Just-In-Time (JIT)
classifier, with a strategy to cope with recurrent concept drifts. A
number of Change-Detection Tests (CDTs)monitor the distribution
of input data in order to detect changes. When a drift is detected,
a new concept representation is created and compared with the
stored representations of concepts and whether it is equivalent
to a previously encountered concept its supervised samples are
used to reconfigure the classifier. Differently, from our method,
this system is particularly apt to handle abrupt shifts, but it is not
particularly efficient in handling other kinds of drift. Anyway, this
strategy could also be included in our framework to improve its
capacity to handle recurrent drifts.

The correlation between the diversity in the ensemble and the
concept drift is the main theme of the paper by Minku et al. [27].
The authors study the influence of diversity on the ensemble before
and after the drift. The experimental analysis shows that ensem-
bles with less diversity obtain a lower error before the drift, while



G. Folino, M. Guarascio and G. Papuzzo / Applied Soft Computing Journal 75 (2019) 284–297 287

a high diversity is required shortly after the drift in order to attain
a better accuracy. An important point of the work is that diversity
alone is not sufficient to recover from the drift, but new models
must be built.

In the second part of this section, we review the papers us-
ing evolutionary algorithms for the task of classification of data
streams.

The authors of [28] use a genetic algorithm to improve concept
drift detection methods, by automatically setting their parame-
ters. Experiments were conducted on nine artificial and three real
datasets by using four different concept drift detection techniques.
In most of the cases, the accuracy is improved.

The work in [29] aims to verify whether GP can adapt to abrupt
concept drifts, without using any drift detection function, on the
basis of the consideration that population-based methods can eas-
ily adapt to changes. The experiments, performed on synthetic
datasets and on one real dataset, show that the rate of crossover
and mutation and the size of population affects the speed of adap-
tation and that a population previously trained on previous data, is
more effective in answering to a concept drift.

In [30], the authors define an active learning framework using
some policies for sampling and archiving data and adopting GP for
classifying the stream. In practice, the GP algorithm is applied only
to a sample of the data in order to save time in the computation-
ally expensive phase of the fitness evaluation. The experimental
results, conducted on some datasets with class imbalance, demon-
strate the goodness of the approach in detecting theminority class.

The problem of evolving GP classifiers for classifying data
streams with label budget is coped in [31]. As the above-described
work, policies of archiving and sampling are adopted. In addition, a
cost is associated to the procedure of labeling data for training the
classifiers. The evaluation on artificial and real datasets shows that
the framework is sensible to the usage of multiple generations for
data subset and to the coevolution of programs.

In [32], the authors adopt an evolutionary approach for the
construction of ensembles with different levels of diversity, after
a drift is detected and use standard ensemble algorithms in the
stationary phase of the algorithm. More in detail, a Kernel Density
Estimation (KDE) method is used to generate synthetic datasets,
subsequently labeled by means of a multi-objective optimization
method, which allows to train each model of the ensemble with a
different subset of synthetic samples, in order to promote diver-
sity. Experiments conducted on artificial and real datasets aim to
understand forwhich type or shape of drifts the approach performs
better. This method is potentially usable by each ensemble-based
algorithm, as it introduces diversity in the ensemble, after a drift is
detected. However, the literature is contrasting on the real benefits
of promoting diversity in an ensemble.

To summarize, someworks are devoted to recognize only a par-
ticular type of drift, typically abrupt (as thework in [21], which has
the advantage of handling well high-dimensional and imbalanced
dataset) or recurrent (as the works in [26,29]), but they cannot
efficiently handle other types of drift.

Many works are limited from having an expensive detection
function [21], or continuously re-train the model [6], or update
the models when new labeled tuples arrive independently from
the drifts [22,24]; all these issues limit their applicability to data
streams having real-time constraints. Some other works aim to
generate an ensemble with a higher diversity (see [27] and [32]),
however the improvements in terms of accuracy derived from the
introduced diversity in the ensemble are not really evident.

Some strategies are orthogonal to our method, and can be
included in our approach to further extend the applicability as [26],
which would permit to handle recurrent drifts or [23], which
would permit to handle time constraints and detect new classes.
In addition, the approach in [30], which aims to understand the

performance of a GP-based ensemble when only a sample of the
data is used, and the method in [31], which introduces the usage
of a label budget, can be also useful to improve our framework.

As mentioned in the previous section, FD has been yet used
to tackle different types of data mining tasks (e.g. clustering and
mining association rules). Therefore, in this last part of the re-
lated work section, we review these papers. In [15], the authors
introduce GDFStream (Grid Fractal Dimension-Based Data Stream
Clustering), an effective clustering approach for large data streams.
The approach incorporates a grid method, and the combined Frac-
tal Dimension-Clustering methodology is employed to efficiently
discover the different clusters. The algorithm is composed of an
on-line and off-line phase. First, a summary of some statistics are
computed and stored (on-line step); then, the final clusters are
generated using the computed statistics (off-line step). The fractal
dimension is used to improve the clustering process, so that data
points in the same cluster are more self-affine among themselves
than to points in other clusters. The approach allows to learn
clusters with arbitrary shapes in a very efficient way, and it is
capable of dealing with points of high dimensionality.

In [16], the authors define an approach tomine association rules
in evolving data streams, allowing the classification of events with
rules, which could vary depending on the actual state of the data.
The proposed technique aims to identify themost relevant features
characterizing each class on the basis of the general properties
exhibited by the data stream. The framework combines a statistical
rule mine algorithm, named StARMiner (Statistical Association
RuleMiner) with amonitoring process, which allows to avoid false
alarms, guaranteeing that the set of association rules are updated
only when a change in the data occurs. This monitoring technique
is based on the computation of the fractal dimension used to
estimate change in data streams. Experimental results on synthetic
data show that the approach is scalable on both the number of
events and the number of attributes.

To the best of our knowledge, GP ensembles and fractal dimen-
sion have been applied only in the work in [33] for classifying con-
tinuous data streams and handling concept drifts. The main strat-
egy used in the above-cited paper to detect changes is based on
the computing of the fractal dimension of the fitness of incoming
data. The experimental results are promising, however, even this
approach has the limit to need a continuous phase of training and,
in addition, computing the fitness of new data requires that at least
a significant sample of these data are pre-classified. In real data
streams, this can be very costly, as inmany cases it would require a
work done by experts or a heavymethod for computing real classes
of the examples. Furthermore, it is hard to decide when changes
may happen. In some cases, drifts are quite frequent, while in other
cases they can require hours, days or months (i.e., the intrusion
detection problem). On the contrary, in our work, changes are
detected on the basis of the fractal dimension computed directly
on the new chunks of data, without the need to pre-classify data at
this phase. So, labeled training data are necessary only when new
drifts are discovered, which can be very rare.

3. Background

In this section, we describe some background information use-
ful to fully understand the way in which our classification frame-
work works. First, we illustrate how the ensemble techniques, and
in particular, the boosting approach can be used for the task of
classification; then, we describe an efficient distributed boosting
algorithm proposed in [10] and used as base classification tool in
our framework.



288 G. Folino, M. Guarascio and G. Papuzzo / Applied Soft Computing Journal 75 (2019) 284–297

3.1. Ensemble approaches for data classification

The ensemble methods [34,35] are learning techniques where
several weak base classifiers are trained for the same task by one or
more learning algorithms and their predictions are combined ac-
cording to a specific strategy for classifying new unseen instances.
Formally, let S = {(xi, yi)|i = 1, . . . ,N} be a training set where xi,
called instance, is a features vector with m features and yi is the
class label associated with the instance xi. A classifier, given a new
instance, allows to predict the unknown class label for it.

The base assumption is that the combined decision of many
single classifiers is usually more accurate than that given by a
single component as shown in [35,36].

Several strategies are defined in literature for combining the
classifier predictions.

The boosting algorithms adaptively change the weights of the
training instances according to the misclassification error. Given
the number T of trials (rounds) to execute, T weighted train-
ing sets S1, S2, . . . , ST are sequentially generated and T classifiers
C1, . . . , CT are built to compute a weak hypothesis ht . Let wt

i
denote the weight of the example xi at trial t . At the beginning
w1

i = 1/n for each xi. At each round t = 1, . . . , T , a weak learner
C t , whose error ϵt is bounded to a value strictly less than 1/2, is
built and the weights of the next trial are obtained by multiplying
the weight of the correctly classified examples by β t

= ϵt/(1− ϵt )
and renormalizing the weights so that Σiw

t+1
i = 1. Therefore, the

algorithm aims to assign higher weights to the examples difficult
to classify and a lower value to the others.

In addition to the boosting algorithm, stacking-based methods
and random forest are among the most used in literature.

The Stacking [37], a.k.a. stacked generalization, is an effective
ensemble-based approach able to combine the predictions of sev-
eral classifiers by means a meta-classifier but, differently from the
boosting approach, the whole training set is used to learn each
single base model. In detail, the algorithm exploits these base
models for building a ‘‘stacked-view’’ where the features of each
instance are the predictions of each classifier on a training set
instance. Finally, this view is used to learn the meta-classifier. The
main problem of this technique is the need of choosing what kind
and how many base classifiers to employ.

TheRandomForests [38] is an efficient andparticularly accurate
ensemble-based technique. This algorithm combines simultane-
ously two different strategies: a bagging algorithm and a random
selection of the features. Specifically, the bagging approach is ap-
plied on a set of tree-based classifiers. The main difference with
respect to a simple bagging procedure relies on the building of the
trees, which are trained and evaluated only on a random subset
of the features. The main drawback of this approach is the model
size: a forest could require hundreds of megabytes of memory to
be applied.

3.2. The distributed GP tool

The GP paradigm is often used to build decision trees in classifi-
cation problems [39], also exploiting the tree-based representation
of this paradigm. In fact, the problem of building a tree by using the
GP representation can be easily defined by defining the function
set, which includes all the attributes to test and the terminal set
including all the classes to predict. Specifically, the function set can
be obtained by converting each attribute of the training set into
an attribute-test function. Thus, there are as many functions as at-
tributes. Let A1, . . . , Am be the set ofm attributes of the training set.
Let Dom(Ai) = {a1, . . . , an} be the domain of the possible values
that Ai can assume. Then, the corresponding attribute-test function
fAi has arity n, and if the value of Ai is aj, then fAi (a1, . . . , an) = aj.
First, when a tuple has to be evaluated, the function contained

Fig. 1. The BoostCGPC algorithm based on AdaBoost.M2.

in the root node of the tree is applied to test the corresponding
attribute and consequently to execute the argument that emerges
from the test. If the argument is a terminal, then the class name for
that tuple is returned, otherwise the new function is executed.

Indeed, the GP paradigm have been widely applied yet in solv-
ing challenging problems coming from several application do-
mains [40–43]. In particular, for the task of classification of data
streams, GP-based algorithms are less likely to get stuck in the
local optimum, permit to evolve more solutions (and therefore
they can be used to build adaptive ensembles better modeling the
solution of the problem), and furthermore, they perform a process
of implicit feature extraction [13].

In addition, no changes are required in a training set to generate
different models for the stochastic nature of the evolutionary algo-
rithms and finally they can be easily implemented on distributed
architectures. Therefore, in this work, we use the distributed GP-
based algorithm, BoostCGPC, proposed in [10]. It is a GP ensemble
method, which performs a hybrid variation of the well-known
island model and it demonstrates a superior efficiency and an
improved accuracy in comparison with the classical GP algorithm.
The pseudo-code of this algorithm is presented in Fig. 1.

In practice, a cGP (cellular Genetic Programming) algorithm
improved with the boosting technique AdaBoost.M2 and a popu-
lation initialized with random individuals weighted according to
a uniform distribution are embedded into each node. In detail, the
cGP algorithm defines the strategies for selecting and replacing the
trees of the population and for the asynchronousmigration among
the nodes. Each node generates a number of GP classifiers (one
for each round of the boosting algorithm) by running for a fixed
number of generations and for a given number of boosting rounds.
After the end of each boosting round, each classifier updates the
local vector of the weights that measures the current prediction
accuracy. Finally, for each boosting round, the hypotheses, gener-
ated by each classifier, are exchanged among all the processors in
order to produce the overall ensemble of predictors. In this way,
the whole ensemble is embedded in each node and it can be used
for recomputing the new vector of weights.

A detailed description of the BoostCGPC framework can be
found in [10].

4. Concept drifts and fractal dimension

In this section, we illustrate the main types of concept drift
presented in the literature and show how a function of the family
of the fractal dimensions can be used to detect them efficiently.



G. Folino, M. Guarascio and G. Papuzzo / Applied Soft Computing Journal 75 (2019) 284–297 289

4.1. Concept drifts and detection function

A concept drift is defined as a change of the distribution gener-
ating the data [44,45] and it is usually defined as virtual drift. A dif-
ferent case happenswhen the conditional distribution of the target
variable changes,while the data distribution could not change. Also
in this case, we have a type of drift, named real concept drift [46].
Techniques for coping with the real concept drift must be based on
the knowledge of the predicted class and, therefore, data including
also the class must be available. On the contrary, techniques for
handling virtual drift can also act without using any training set
with obvious advantages in terms of efficiency.

This work mainly handles drifts that can be detected from the
incoming data distribution, so that the drift can be detected as soon
as possible and alsowithout having information on the real class of
the data, which it is often available later. However, the weighting
strategy (see Section 5.4), used to reduce the degradation in the
accuracy in the transition phase, can work also in the case of real
drifts.

In our paper, we consider the scenario in which we have a fast
real data stream and an incremental classification algorithm trying
to classify the stream and to answer in real time to changes, which
can happen at any time and can be unpredictable. In some cases,
the drifts can be recurrent, or in consequence of some event [19].
In other cases, they may happen suddenly/abruptly by switching
from one concept to another. Therefore, drifts can be classified on
the basis of the speed of the change in terms of gradual or abrupt
drifts, or they can be considered recurrent when they are periodic.
They are predictable if we can predict when it is likely they occur.
In [27], a more detailed description of the most-known types of
drift is given.

Designing an efficient detection function for coping with drifts
is not an easy task. Among the desired properties of the function, it
is worthmentioning the handling of different types of concept drift
and the velocity necessary to reduce the delay between the time
the drift is detected and the appropriate measures are undertaken.
Usually, training data presents an amount of noise, hard to sepa-
rate; so the detection function must be quite robust to that noise.
In addition, typically, the class (label) of the data is not available at
the time inwhich new data arrive and therefore, it would be better
that the function was able to work on unlabeled data.

All these considerations brought us to choose the detection
function described in the next subsection.

4.2. Exploiting fractal dimension as detection function

Fractals [47] are specific structures that present self-similarity,
i.e., an invariance with respect to the scale used. A family of func-
tions, named fractal dimension (FD) [48], can be usefully adopted to
characterize changes in the data. Among the properties of FD, it is
worth noticing that the presence of a noise smaller than the signal
does not affect it [49].

We can compute the fractal dimension of a dataset by embed-
ding it in a d-dimensional grid with cells of size r and computing
the frequency pi with which data points fall in the ith cell. The
fractal dimension is given by the formula FD =

1
q−1

log
∑

i p
q
i

log r . Among
the fractal dimensions, the correlation dimension, obtained when
q = 2 measures the probability that two points chosen at random
will be within a certain distance of each other. Changes in the
correlation dimension mean changes in the distribution of the
data; thus it can be used as an indicator of concept drift. There
are fast algorithms to compute the fractal dimension. We used the
FD3 algorithm of [50], downloadable from here,1 that efficiently
implements the box counting method [51].

1 https://www.cs.csustan.edu/~john/Post/FD3/.

Owing to these interesting properties, the above-described al-
gorithm is chosen as detection function in our framework. In prac-
tice, the fractal dimension function is directly computed on the
labeled/unlabeled data coming from the stream and it is applied
in an adaptive way to permit the detection of the changes. More
details are supplied in Section 5.3.

5. The proposed framework for detecting concept drifts and
classifying data streams

In this section, we provide a detailed description of the our
framework for the data streams classification task. First, we detail
the software architecture and the distributed GP algorithm used
to generate the ensemble used to classify the data stream, then
we illustrate the phase of the drift detection and discuss the issues
concerning the delay in detecting the drift itself.

5.1. The architecture of the framework

In this section, we illustrate the general architecture adopted
for classifying data streams, detecting drifts and consequently
updating the ensemble.

At the bottom in Fig. 2, an infinite stream of tuples is supposed
to flowas input to the framework and only part of themare labeled.
After the startup phase, in which the ensemble is built, each newly
arrived tuple, i.e., Ti, is passed to the classifier that assigns a class to
it. Concurrently, a window of tuples (Ti−1, Ti−2, . . . , Ti−wind, where
wind is the number of tuples forming the window) is analyzed by
the module computing the fractal dimension in order to generate
a new calculation of the fractal dimension Fdi.

Then, the drift detection module evaluates whether a drift is
detected on the basis of the last k values of the fractal dimension
computed. In practice, if the drift is detected then the BoostCGPC
module is activated, the switch in figure is turned on and a number
of labeled tuples are passed to this module. In case the number of
labeled tuples is not sufficient as a training set for the classification,
the algorithm waits until a sufficient number of tuples is reached.
Obviously, this introduces a delay in response to the concept drift.

The base learner of the ensemble is a GP-based decision tree,
better detailed in Section 3.2. The ensemble of GP decision trees
(C1, C2, . . . , Cm) originally built by the BoostCGPC algorithm in
the startup phase, is updated, by adding the new trees generated
and/or removing old or inadequate trees in accordance with a
strategy of pruning. The current implementation simply removes
the oldest models. Note that it is one of the possible strategies;
for example, a different approach shown in [6] stores each clas-
sifier with a class distribution similar to that of the current data
and it deserves to be investigated in future works. Anyway, the
ensemble-based methods assume that the base models should be
quite different in order to obtain a good predictive accuracy, but
the correlation between diversity and accuracy is even currently
studied and no strong conclusion has been drawn [52].

A more formal description of the overall process can be found
in the next subsection.

5.2. The distributed GP classifier algorithm

The classification streaming algorithm alternates two phases:
a non-stationary phase in which a function based on the fractal
dimension for detecting changes in new unlabeled data (but it can
also work on labeled data) is adopted and a (usually not frequent)
stationary phase in which the distributed GP algorithm is run in
order to build new classifiers and recover from a drift.

The pseudo-code of the algorithm, after an initial phase of
training, is shown in Fig. 3. The initial phase simply consists of

https://www.cs.csustan.edu/~john/Post/FD3/


290 G. Folino, M. Guarascio and G. Papuzzo / Applied Soft Computing Journal 75 (2019) 284–297

Fig. 2. Software Architecture of the Streaming GP algorithm.

the building of the ensemble by means of BoostCGPC. We con-
sider an infinite stream of data composed by unlabeled tuples
T1, T2, . . . , T∞ and an ensemble E = {C1, C2, . . . , Cm} previously
built by BoostCGPC. A limit is placed on the size of the ensemble,
i.e., the maximum number of classifiers is set to M . In order to
detect changes, different windows of data are analyzed. The size of
each window is set to Twind and, to avoid the overhead associated
with the analysis of each tuple, the detection of the change is
detected each Tincr tuples.

The fractal dimension computed on each window is added to
the set of elements to be analyzed by the detection function and
the oldest element is removed in order to maintain the same size.
More details on how the fractal dimension is computed and onhow
the detection function acts are reported in the next subsection.

When a change is detected, a new set of labeled tuples TL is
produced (i.e., taking the labeled tuples from the stream, if they are
present or using an automatic/manual classifier). BoostCGPC runs
for T rounds on N nodes using this set of tuples and it will produce
T×N classifiers, whichwill be added to the ensemble removing the
oldest classifiers so that the overall number of classifiers remains
M. If the size of the ensemble is greater than the maximum fixed
sizeM , the ensemble is pruned by retiring the oldest (M − T × N)
predictors and adding the new generated ones.

5.3. The drift detection module

The drift detection module is based on the fractal dimension
function, which is directly computed on the unlabeled data coming
from the stream. The overall detection process is illustrated in
Fig. 4, and explained in the following.

As explained in the previous subsection, the value of the frac-
tal dimension function (Fdi) is computed on a window of tuples
(Ti−1, Ti−2, . . . , Ti−wind, where wind is the number of tuples form-
ing the window). As the stream goes, we will obtain a fractal
set FS = {Fd1, Fd2, . . . , Fdk} where k is the number of elements
considered for applying the detection function; the k points will
constitute the curve to be analyzed, shown in the box of the figure.
Afterwards, the curve is normalized and the linear regression co-
efficients of the fractal set are computed; if the absolute value of
the angle coefficient is greater than a predefined threshold (i.e., 1
corresponding to an angle of π

4 ), a change is detected. Choosing

Fig. 3. The overall algorithm.

angle coefficients greater (minor) permits more (less) abrupt drifts
to be coped with, and, in addition, the amount of false positives to
be detected can be reduced (increased), at the cost of not detecting
some drifts. In other words, the sensibility of the algorithm can be
controlled by this parameter.

5.4. Velocity of the stream and delay

A minimum number of labeled tuples, comprising tuples in
which the drift was generated, are necessary in order to obtain
significant results in the generation of classifiers. That obviously
introduces a delay in detecting the drift due to the time necessary
to collect this set of tuples [23].



G. Folino, M. Guarascio and G. Papuzzo / Applied Soft Computing Journal 75 (2019) 284–297 291

Fig. 4. Detecting a drift on the basis of the fractal dimension.

In this respect, semi-supervised learning techniques could be
introduced for exploiting the new unlabeled instances provided
by the data stream. These techniques are commonly used when a
large amount of unlabeled data is available and a limited number of
labeled examples is provided [53]. In particular, these approaches
try to infer the class of unlabeled instances by means of a model
learnt on labeled examples and then using them to enrich the
training set and to build a classifier with better generalization
capabilities.

Another important point to consider is the delay fromwhen the
drift first is detected to when the new classifiers are built and are
ready to respond to the drift. This delay mainly depends on two
factors: the velocity of the drift, i.e., how many new tuples will
arrive in the unit of time, and on the timenecessary to built the new
classifiers by the evolutionary algorithm. The latter aspect can be
reduced by employing a more powerful cluster or more resources
in a cloud at the expenses of a higher cost, thanks to the distributed
nature of our framework. Thus, in the transitory, it is necessary to
accept a trade-off between a degradation in accuracy or the cost of
paying a higher price to rent a larger number of resources.

Therefore, we introduced a mechanism to reduce the degrada-
tion in accuracy in this transitory phase. In practice, during this
phase, the algorithm performs a dynamic tuning of the weights of
the classifiers by using a minimum set of new ‘‘labeled’’ coming
tuples as a validation set. The number of tuples necessary to adjust
the weights is considerably lower than the set needed by the GP
algorithm, so that we have a first response to the drift, before the
new classifiers are generated. In addition, this strategy has some
advantages in comparison to adopting only the pruning of the
oldest classifiers. In fact, the historical classifiers will be preserved
and those that performwell on the drift will obtain a higherweight
and could be also used in the case of recurrent drifts.

Remember that, in theAdaBoost algorithm, the boostingmethod
used in the BoostCGPC algorithm (detailed in Section 3.2), the
classifiers composing the final ensemble areweighted by the factor
log(1/β t ) so that greater weight is given to classifiers with lower
error, as β varies from 0 to 1 and is a function of the error
(see Section 3.2). In our algorithm, the current ensemble E =

{C1, C2, . . . , Cm} is validated on a minimum set of labeled tuples

Tl1, Tl2, . . . , Tlk and β is updated using the following formula: β =

β(1−γ ϵ), where ϵ is the error on the new validation set and γ is a
parameter varying from 0 to 1, taking into account the importance
of the history of the data (1 indicates no importance to historical
data).

In addition, this approach could be exploited to adopt a clever
pruning strategy and supplies robustness in case of recurrent drifts.

6. Performance evaluation

In order to validate the goodness of our approach in detecting
a drift and quickly responding to it, different experiments using a
real and some artificial datasets are conducted. Hence, the main
goals of this section are to assess the capacity of the framework
in detecting and quickly reacting to the concept drifts, to evaluate
the classification accuracy exhibited by the framework and to
compare the effectiveness of our approach to recognize the drifts in
comparisonwith other techniques andwith the algorithmwithout
the drift recognition part. In the next subsection, more details are
supplied concerning the datasets and the parameters used.

6.1. Datasets and parameters

Here, the artificial datasets and the real dataset used in the
experiments are described. The artificial datasets were generated
using amodified version of the dataset generator freely download-
able,2 supplied by the authors of the work described in [27]. It is
worth noticing that the generator is able to simulate drifts with
different grades of class severity.

In addition, a real dataset, hereafter named PhotoObject, was
also used. The dataset, a view of the DR6 dataset, extracted from
the Sloan Digital Sky Survey (SDSS3) is the same used in [24], also
for the sake of comparison. This view contains all the attributes
(7) of each photometric object, i.e., five attributes representing
the original color measurement, and the other two respectively

2 http://pages.bangor.ac.uk/~mas00a/EPSRC_simulation_framework/changing_
environments_stage1a.htm.
3 http://www.sdss.org/dr6/.

http://pages.bangor.ac.uk/~mas00a/EPSRC_simulation_framework/changing_environments_stage1a.htm
http://pages.bangor.ac.uk/~mas00a/EPSRC_simulation_framework/changing_environments_stage1a.htm
http://www.sdss.org/dr6/


292 G. Folino, M. Guarascio and G. Papuzzo / Applied Soft Computing Journal 75 (2019) 284–297

indicating the right ascension (RA) and the declination (DEC). So,
the dataset will comprise 500,000 records of class 1 (galaxies),
and 41,116 records of class 2 (dwarf-stars). In order to balance
the number of tuples of the different classes, as in the above-cited
paper, the tuples of the two classes were merged (keeping their
original order) by selecting records, from class 1 with probability
0.9 and records from class 2 with probability 0.1. In practice, if the
result of the random extraction is 1, the next tuple of class 1 is
inserted into the dataset; on the contrary, the next tuple of class
2 is added to the dataset. The resulting dataset contains 782,730
tuples, quite balanced between the two classes.

Differently from the artificial datasets, there is no information
on the position and the presence of drifts. However, in the original
DSS dataset and similarly also in the PhotoObject view of this
dataset, the correct classification of stars and galaxies presents
different levels of difficulty and a static model cannot adequately
handle all these differences for different reasons. First, dimmer ob-
jects close to the galactic plane are obscured by dust and the higher
the declination, the fewer dim objects will be obscured, since the
angle of capturing the images ismoving towards the vertical access
of our solar system. In addition, the ratio between the stars and
galaxies switches gradually as the declination increases, so that the
area that is close to the vertical access of our solar system has less
stars and more galaxies. Since the two classes (starts and galaxies)
do not have clear boundaries to separate them, changing the ratio
of the classesmight effect the boundaries between the two classes,
and so the classification task becomes more difficult.

The artificial datasets comprise the circle function, the sine
function, and the moving hyperplane [7]. The hyperplane gener-
ator can also be used to generate lines and planes. All the data
sets contain a noise level of 10% obtained by randomly flipping
the class of the tuples from 0 to 1 and vice versa, with probability
0.1. Furthermore, the drifts are ordered by increasing class severity
(i.e., the percentage of input space having its target changed after
the drift).

The circle data set is a 2-dimensional unit hypercube, thus an
example x is a vector of 2 features xi ∈ [0, 1]. The class boundary is
a circle of radius r and center c of coordinates (a, b). If an example x
is inside the circle then it is labeled class 1, class 0 otherwise. Drift
is simulated moving the radius of the circle. We fixed the center to
(0.5, 0.5) and varied the radius from 0.2 to 0.3 (16%), from 0.2 to
0.4(38%) and from 0.2 to 0.5(66%). This simulates drifts more and
more abrupt (the class severity is reported in brackets).

The sine function is defined by the formula a · sin(bx + c) + d
where a = b = 1, c = 0 and d varying from −2 to 1(15%), from
−5 to 4(45%), from −8 to 7(75%).

The moving hyperplane in d dimensions is defined by the class
boundary

∑d
i=1 aixi < a0 where a1 = a2 = · · · = ad = 0.1 and

a0 varies from −2 to −2.7(14%), from −1 to −3.2(44%) and from
−0.7 to −4.4(74%).

All the experiments of the next subsections were averaged
over 30 runs and, in order to validate the comparison results
statistically, we performed a Wilcoxon signed-ranked test with
the confidence level of 0.95 (α = 0.05). As for the BoostCGPC
classification algorithm, we used the same parameters as in [10]
and no tuning phase was conducted as the classification algorithm
is quite stable [10] and, in addition, we are not interested in
obtaining improvements in terms of accuracy, by choosing the
optimal set of parameters for each dataset/application. Therefore,
we fixed a probability of 0.1 for reproduction, 0.8 for crossover
and 0.1 for mutation. The maximum depth of the new generated
sub-trees is 4 for the step of population initialization, and 2 for
mutation, while the maximum size after crossover is fixed to 17.
During the training phase, BoostCGPC is executed for 5 rounds and
for 100 generations for each round, using a population of 1280
individuals. A window of 500 tuples is chosen for the evaluation

of the drift, when not differently indicated. In order to evaluate
the classification accuracy (Sections 6.3 and 6.6) an interleaved
Test-Then-Train evaluation is conducted, i.e., each tuple is used to
test the model before it is used for training. Therefore, the model
is always being tested on examples it has not seen. In addition,
the training phase is conducted only in the initial phase of the
algorithm and when a drift is detected.

6.2. Concept drift detection analysis

A first set of experiments aims to analyze the capacity of the
detection module to quickly recognize the different types of drift.
To this aim, the algorithm is run on the artificial datasets described
in the previous subsection. For all the datasets, we generated
30,000 tuples and the concept drifts were simulated each 5000
steps for a total of 5 drifts. We increased the drift from mild to
severe every 5000 steps. In practice, at step 5000, the less severe
drift is performed, at 10,000 a drift brings the function again to
the initial situation, at 15,000 a medium drift is performed and
finally, at 25,000 a severe drift is performed. Then, the detection
module is applied computing the fractal dimension on a window
of 500 tuples with an increment FDincr = 50. The drift is detected
when the absolute value of the angle coefficient is greater than
a threshold fixed to 1, corresponding to an angle of π

4 , which,
according to our experiments, permits to handle many types of
drift.

In Fig. 5, we show simultaneously the fractal dimension for
the analyzed datasets and the identified drifts as vertical lines.
The width of the drift is proportional to the number of windows,
containing a drift detected by the fractal function. Although the
datasets exhibit different behaviors, the proposed function is very
effective and allows to identify a drift a few windows after it
happens. Moreover, the function maintains good performances
even though the presence of noise. Our approach detected only two
false positives for the circle and of the sine dataset and only one in
the case of the line and of the hyperplane dataset. Nevertheless,
they are mainly due to the presence of noise, are very narrow and
could be suitably filtered.

The experiments described here only aims at understanding
whether our detection function is able to detect the drifts indepen-
dently of many issues concerning a real stream, such as the min-
imum number of labeled tuples necessary to train the classifiers
and the consequent delay necessary to collect this set of tuples, the
delay fromwhen the drift first happens towhen the new classifiers
are built and ready to respond to the drift, etc. These problems will
be analyzed in the experiments of the next subsection.

6.3. Classification accuracy: the effect of delay

As remarked in Section 5.4, the accuracy in classification is
limited by the delay in detecting the drift mainly due to two
factors: the time necessary to collect the tuples necessary to train
the classifiers and the time necessary to the framework in order
to build the classifiers. To this aim, in this subsection, we study
the effect of the delay after a drift happens and before the new
classifiers are trained and used. As the delay is determined by a
number of not easily computable factors, we simulate different
delays in term of percentage of tuples (5%, 10% 15% and 20%)
between two consecutive drifts (5000 tuples for all the artificial
datasets and 10,000 tuples for the real dataset).

In Table 1, the error is reported for different percentage of delay
(5%, 10%, 15%, 20%).

In order to evaluate whether the differences between the dif-
ferent percentages of delay are significant, a Wilcoxon signed-
ranked test with the confidence level of 0.95 (α = 0.05) was
used. The Wilcoxon test is a nonparametric pairwise test that can



G. Folino, M. Guarascio and G. Papuzzo / Applied Soft Computing Journal 75 (2019) 284–297 293

Fig. 5. Fractal Dimension (and Drift Detection) results for (a) Line (b) Sine (c) Plane (d) Hyperplane (e) Circle using 30,000 tuples, presenting a concept drift each 5000 tuples
for a total of 6 concept drifts. The width of the drift shown in the figure is proportional to the number of windows in which the detection function identifies the change.

Table 1
Error (%) and standard deviation for the five artificial datasets, for different per-
centage of delay. The values significantly better of the successive value of delay, are
reported in bold.
Dataset 5% 10% 15% 20%

Circle 13.68 ± 0.20 14.22 ± 0.20 15.03 ± 0.19 16.62 ± 0.21
Sine 12.83 ± 0.25 13.81 ± 0.22 14.79 ± 0.24 15.71 ± 0.22
Line 12.31 ± 0.09 13.01 ± 0.10 13.58 ± 0.12 14.09 ± 0.12
Plane 12.56 ± 0.20 13.22 ± 0.19 13.81 ± 0.19 14.30 ± 0.17
Hyperplane 17.65 ± 0.42 17.91 ± 0.40 18.23 ± 0.38 18.49 ± 0.34

be used to detect significant differences between two algorithms.
It is analogous to the paired t-test, however, it is largely used
in literature as it does not assume normal distributions and the
outliers (exceptionally good/bad performances) have less effect on
it. In practice, for each dataset, the test is conducted between two
adjacent columns (two different values of delay) and the values,

which are significantly better of the successive value of delay, are
reported in bold.

In any case, also thanks to the adaptive adjustment of the
weights of the classifiers, considering the same dataset, the dif-
ference between two consecutive columns (i.e., 5% of difference in
term of delay) is not dramatic, even if it is statistically significant in
most of the cases. However, passing form a delay of 5% to a delay of
20%, in many cases, the difference is considerable (i.e. for the Sine
dataset, we pass from an error of about 13% to an error of about
16%).

6.4. Classification accuracy: the effect of drift detection

In this subsection, we want to analyze the improvement due to
the detection of the drifts and the consequent re-training of the
classifiers.



294 G. Folino, M. Guarascio and G. Papuzzo / Applied Soft Computing Journal 75 (2019) 284–297

Table 2
Error (%) and standard deviation for the five artificial datasets and for the real
dataset, detecting drift using the fractal dimension (left) and using only the clas-
sification algorithm (right). The values significantly better than the other case are
reported in bold.
Dataset Drift detection function No drift detection function

Circle 13.68 ± 0.20 19.34 ± 0.49
Sine 12.83 ± 0.25 18.21 ± 0.45
Line 12.31 ± 0.09 18.68 ± 0.15
Plane 12.56 ± 0.20 18.94 ± 0.36
HyperPlane 17.65 ± 0.42 22.42 ± 0.58
PhotoObject 0.704 ± 0.034 0.943 ± 0.043

In Table 2, we reported the error and the standard deviation
for the two cases (using only the classification algorithms and re-
training after a drift is detected). In bold are reported the differ-
ences, which are significant on the basis of a Wilcoxon signed-
ranked test with the confidence level of 0.95 (α = 0.05).

To allow a fair comparison between the two cases, in the table,
the drift detection column reports the values considering a delay
of 5% in detecting the drift. As it can be observed from the table, for
all the datasets, the improvement in accuracy is considerable and it
is also meaningful with respect to the above-mentioned statistical
test. Thedifferences in accuracy are less evident for the real dataset,
in which the drifts are not artificially introduced.

6.5. Classification accuracy: comparing with different drift detection
strategies

In order to understand how our fractal-based strategy for de-
tecting the drifts behaves in comparison with other
well-recognized techniques, here we compare the accuracy of
our strategy in comparison with three drift detection strategies
(i.e., ADWIN, DDM and STEPD).

We used the implementations of these techniques included in
theMOA tool and the choice of these strategies is basedon thework
in [54], which analyzes the performance of the most important
drift detection strategies.

Statistical Test of Equal Proportions (STEPD) [55] is a drift detec-
tion algorithm based on the accuracy. It computes two statistics:
the overall accuracy from the beginning of the stream and the
accuracy of the model computed on a testing window W . If the
difference between the accuracy computed on W and the overall
accuracy is greater than a threshold, then a drift is detected and the
model must be rebuilt/updated. STEPD uses three parameters: the
window value to detect recent changes (we are using 20 instances,
as in original paper) and the significance levels αw and αd. In
practice, STEPD stores the instances in its memory when P < αw

and it resets all the variables (i.e., clear its memory, reset the
window accuracy, etc.) when P < αd. As suggested in the original
paper, we use a value of 0.03 for αd and 0.08 for αw .

The ADaptative WINDdowing method (ADWIN) [56] keeps a
sliding window W with the most recent examples and compares
the distribution on two sub-windows of W . When the difference
of the average value of the two sub-windows is greater than a
threshold, then the older sub-window is dropped and a change in
the distribution of examples is assigned. A confidence parameter δ

with value of 0.002 is used to control the false positive rate, i.e. if
the expected value of distribution remains constant withinW , the
probability that ADWIN shrinks the window at this step is at most
δ.

Finally, DDM (drift detection method) [57] is based on a bino-
mial distribution, which represents the probability for the random
variable considering the number of errors in a sample of n exam-
ples and its empirical standard deviation. As this technique is based
on the overall error rate, its effectiveness depends on the changes

Table 3
Error (%) and standard deviation for the five artificial datasets and for the real
dataset (PhotoObject), for different drift detection strategies (Fractal, ADWIN,
STEPD and DDM).
Dataset Fractal ADWIN STEPD DDM

Circle 13.382 ± 0.201 13.783 ± 0.208 13.258 ± 0.193 13.822 ± 0.220
Sine 12.227 ± 0.246 12.572 ± 0.121 11.960 ± 0.108 13.195 ± 0.234
Line 12.013 ± 0.094 12.703 ± 0.227 12.318 ± 0.128 13.407 ± 0.196
Plane 12.160 ± 0.197 12.980 ± 0.091 12.347 ± 0.139 13.055 ± 0.116
Hyperplane 16.052 ± 0.223 17.068 ± 0.216 16.665 ± 0.284 17.042 ± 0.208
PhotoObject 0.704 ± 0.034 0.787 ± 0.044 0.888 ± 0.067 0.845 ± 0.062

in the sum of false positive and false negatives and therefore, it
has some problems when the changes are gradual. Also for this
function, we use standard parameters.

Table 3 reports the percentage of error and the standard devi-
ation for the five artificial datasets and for the real dataset (Pho-
toObject), respectively for our strategy (Fractal) and for ADWIN,
STEPD and DDM. To verify whether the differences are statistically
significant we used the Friedman test. The critical value of the
Friedman test [58] is obtained from a chi-square distribution with
two degree of freedom and a significance level of 5%. In addition,
when the test report significant differences, a pair-wise Wilcoxon
signed-ranks test with the Bonferroni adjustment was applied to
each couple of algorithms in order to rank the algorithms. The
algorithm/s performing better is reported in bold and the second
one/s in italic.

As for the Circle and for the Line and Plane dataset, STEPD and
Fractal dimension are themost effective techniques and no big dif-
ferences among the two strategies is observed. STEPD outperforms
all the other strategies for the Sine dataset, even if differences with
our algorithm are not so relevant. Finally, the fractal dimension
performs significantly better then the others for the Hyperplane
and for the real dataset.

6.6. Comparison with the random forest algorithm

We compared our approach with the random forest-based
method described in the related work section, as it is the most
related to our approach and uses a real-world large dataset, Pho-
toObject, described in Section 6.1. We recall that the algorithm
adopts a detection function comparing the entropy between the
current and a reference window for coping with concept drifts. In
addition, it uses a margin function (mg) in order to establish when
the forest is ready for deployment, i.e., when the margin function
is greater than a defined threshold. Two different threshold defini-
tions are used, one (mgthreshold) representing a linear relation and
the other one (mg ′

threshold) representing a monotonic relation. In
practice, when using mg ′

threshold to decide to deploy the forest the
algorithm obtains large classification errors, but fewer unlabeled
records are wasted, since the forest is deployed more often than
when basing the decision onmgthreshold.

Fig. 6, taken from [24], shows the results concerning the appli-
cation of the streaming random forest algorithm to the PhotoOb-
ject dataset using the two different thresholds described above
(the difference is visible only after the point marked by F (record
483,395)). In the figure, the asterisks surrounded by circles and by
diamonds respectively represent the points at which the forest has
passed through a test phase after it was evaluated and the points
of testing for the forest after detecting concept drifts.

The two plots reach a maximum 1.8% classification error. The
error reaches itsmaximumat the pointmarked by F, and decreases
until it reaches its minimum towards the end of the stream.

Fig. 8 reports the fractal dimension for the PhotoObject dataset
and the identified drifts as vertical lines. The width of the drift is



G. Folino, M. Guarascio and G. Papuzzo / Applied Soft Computing Journal 75 (2019) 284–297 295

Fig. 6. Classification errors for PhotoObject using the Random Forest algorithm.

Fig. 7. Classification errors for PhotoObject using our algorithm.

Fig. 8. Fractal Dimension (and Drift Detection) results for the PhotoObject dataset.
Thewidth of the drift shown in the figure is proportional to the number of windows
in which the detection function identifies the change.

proportional to the number ofwindows, containing a drift detected
by the fractal function.

In Fig. 7, the classification error for our algorithm is shown
together with the points (diamonds) in which a concept drift is
detected and consequently, it is needed to build new classifiers.
The behavior of the twoalgorithms in termsof classification error is
quite similar, except of a region just before 200,000 tuples, inwhich
the random forest algorithm obtains a better accuracy. However,
our algorithm (see also Fig. 8) detects only 12 concept drifts (while
the random forest needs to recover from 16 concept drifts) and
that permits a considerable saving regarding the computationally
expensive phase, in which it is necessary to build the classifiers.

7. Discussion

In this section, we want to evaluate the complexity of the re-
training phase (the GP classification algorithm) of our approach
and to discuss the main advantages and drawbacks of the fractal
detection function in comparisonwith otherwell-knowndetection
functions, for the task of detecting different types of drift and
handling noisy high-dimensional datasets.

Among the main advantages of our algorithmwe recall that the
detection function can be evaluated quickly and that the computa-
tionally expensive re-training phasemust be performed onlywhen
a drift is detected, which usually is a rare event. However, partic-
ularly in the case of frequent drifts, it is important to evaluate the
computational cost of this re-training phase, also in comparison
with other different approaches. To this aim, on the following we
evaluate and compare the time complexity of our method with
other two approaches that try to address our same task [24,32];
the first one is based on a population approach as our technique,
while the last one adopt a less computationally expensive random
forest algorithm.

The GP distributed algorithm used in this work for re-training
the ensemble is dominated by the evaluation phase of the evolu-
tionary algorithmwhile the other operations (crossover, mutation,
etc.) are negligible. To summarize the way in which the evolution-
ary algorithm works, a population of Pop classifiers (solutions of
the problem) are randomly generated and evolved for a fixed num-
berN of generations, driven by an evolutionary process. In practice,
different operations are performed (e.g. crossover, mutation, etc.)
in order to generate a new population. In addition, to a classical
GP algorithm, our boosted version, evolves the population for K
rounds of boosting. At the end of the process, the best solutions
form the ensemble used to classify the data. Therefore, the time
complexity of our classification method is O(Pop ∗ N ∗ K ), as we
must evaluate all themembers of the population for N generations
and forK roundof boosting. Typically, a small number of rounds are
required to obtain good results (i.e., 5 or 10). Thus, the complexity
is dominated by the number of generations and by the dimension
of the population. However, the distributednature of our algorithm
would permit to reduce the time by a factor close to m (as GP-
based algorithms are highly scalable), where m is the number of
processors of a parallel/distributed machine, in which we perform
the computation.

The population-based approach proposed in [32] exploits the
algorithm NSGA-II (Nondominated Sorting Genetic Algorithm),
whose complexity heavily depends on the non-dominated sorting
part of the algorithm. The complexity of this operation for each
iteration is equal toO(F ∗Pop2), where F is the number of objectives
and Pop is the population size. The number of models in the
ensemble K and the number of synthetic samples for training N
are two important elements in the complexity analysis. On the
contrary, the number of class labels L does not impact on the
complexity of the NSGA-II solver per iteration.

In the random forest approach in [24], the training phase de-
pends on three components: (i) the time to build each tree, (ii)
the time to evaluate the forest, and (i) the time to test the forest.
Assuming the trees are balanced, the time to build a tree is O(U ∗

treemin ∗ log2 treesize) where U is the number of the trees. The
evaluation time depends on reading the records of the evaluation
set and passing them down all the trees of the current forest.
Anyway, the evaluation set contains a maximum of 1% of the
number of records read; therefore the complexity of this step is
O(U ∗ treemin ∗ log2 treesize). The last component requires O(U ∗

log2 treesize) for evaluating the whole forest. Therefore, the overall
complexity of this approach is O(U ∗ treemin ∗ log2 treesize).

Obviously, with respect the two above mentioned algorithms,
while our approach is comparable and also better of the other



296 G. Folino, M. Guarascio and G. Papuzzo / Applied Soft Computing Journal 75 (2019) 284–297

population-based approach (if we do not use a large number of
generations), it is slower than the random forest algorithm and
it could be considerably slower than other approaches based on a
single solution. However, by considering that the re-training phase
is executed not frequently and that the distributed nature of the
framework can alleviate this aspect, nowadays, it can be hardly
considered a problem. Indeed, the re-training phase of the exper-
iments performed for this paper for the real world dataset took
about 5 s on 16 nodes of a cluster having two Xeon E5520 2.26 GHz
CPUs and 16 GB of RAM for node. Consider that this cluster is not
so recent (it was acquired at the end of 2009) and, in addition,
GPU-based implementations would permit to run GP algorithm
up to hundreds of times faster in comparison with running only
on CPUs [59], when a sufficient number of evaluation is needed.
That would allow to handle really fast streams of data and frequent
drifts.

As for the capacity of the drift detection function to detect
different types of drifts, in comparison with other approaches it
is hard to establish which algorithm is the best, because it de-
pends on the metrics of evaluation considered (among the most
significant ones, we recall the evaluation time, the false alarm and
the miss detection rate) and on the type and the frequency of the
drifts, on the dimensionality of the data, on the presence of noise,
etc. According to [3], drift detection methods can be divided in
four families, which share common drawbacks and advantages:
Hypothesis Tests (assessing the validity of a hypothesis according
to a predetermined confidence), Change-point Methods (evaluat-
ing when the process changes its statistical behavior or not by
analyzing all possible partitions of the data sequence), Sequential
Hypothesis Tests (sequentially inspecting incoming samples up to
when a decision to accept or refuse the no-change hypothesis can
be taken), and Change Detection Tests (sequentially analyzing the
statistical behavior of streams of data/features, in order to detect a
change).

Hypothesis Tests (as also Change-point methods) works on
fixed sequence of data, and therefore, are not particularly apt to
work with online datastreams. In addition, change-point methods
are usually computationally expensive and hardly can be used for
working with fast data streams. Change Detection Tests (CDTs)
are usually fast and are apt to works on data streams as they se-
quentially analyze the statistical behavior of the stream. Sequential
Hypothesis Tests can work on sequences of data, but have the
problem that, once they take a decision on the drift, no additional
data are analyzed and this limits their applicability to a continuous
stream of datawith frequent changes. Many CDT-based algorithms
(i.e., ADWIN, PHT and CUSUM) works on the mean or the standard
deviation of the data and therefore, their behavior is more appro-
priate for characterizing data, which have linear behavior, but they
do not behave well when data has nonlinear and chaotic behavior,
while fractal dimension can handle also non-linear cases. Other
algorithms are based on the error rate (DDM), on the distance-
error-rate (EDDM), and directly on the accuracy as STEPD, which
compares the accuracy of the base learner in the W most recent
instances with the overall accuracy. All these techniques based on
the error/accuracy rate, present problems when the changes are
gradual or are only present in the features of the data and typically
detect a higher number of false alarms. A detailed experimental
comparison of the above-mentioned drift detection techniques for
different metrics can be found in [54].

As for the drift detection function considered in this paper,
i.e., the fractal dimension, it can be evaluated very quickly, is
particularly able to filter thenoise and to reduce thedimensionality
of the data and, typically, itworkswell even in the case of nonlinear
data. In addition, it needs to store inmemory only a few values, one
for eachwindow of data. In addition, it is less prone to false alarms,
as if changes in data are present only for a few windows, they are
not considered by our function as a drift. However, our function can
hardly recognize really slow drifts, as the fractal dimension curve
would have a slope, which the algorithm cannot detect.

8. Conclusions

Classifying large data streams with concept drifts is an im-
portant and challenging issue for traditional machine learning
approaches both as the drifts can be of different types (abrupt,
gradual, etc.) and because the detection phase must be conducted
quickly in order to not degradate the accuracy of the model. To
cope with this problem, we propose a framework consisting of a
distributed GP ensemble classifier used in the training (stationary)
phase and a fractal dimension-based function for detecting differ-
ent types of concept drift in the non-stationary phase. Experiments
results show that the framework is able to detect different types
of drift quickly, is robust to the noise and has a good behavior
when the delay in collecting tuple/recognizing the drift is not
excessive. In addition, the fractal-based drift detection strategy
proposed is comparable in terms of accuracy with well-recognized
drift detection algorithms.

As future works, we plan to study how the distributed nature
of the framework permits the choice of a tradeoff between the
velocity of the response to a drift and the cost of requesting an
adequate number of resources of a Cloud/Distributed environment,
i.e., a public cloud environment as the Amazon EC2 platform.

References

[1] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, Wei Ding, Data Mining with Big
Data, IEEE Trans. Knowl. Data Eng. 26 (1) (2014) 97–107.

[2] Pethuru Raj, Ganesh Chandra Deka, Handbook of Research on Cloud Infras-
tructures for Big Data Analytics, first ed., IGI Global, Hershey, PA, USA, 2014.

[3] Gregory Ditzler, Manuel Roveri, Cesare Alippi, Robi Polikar, Learning in non-
stationary environments: A survey, IEEE Comp. Int. Mag. 10 (4) (2015) 12–25.

[4] Denis Moreira dos Reis, Peter Flach, Stan Matwin, Gustavo Batista, Fast
unsupervised online drift detection using incremental Kolmogorov-Smirnov
Test, in: Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, in: KDD ’16, ACM, 2016, pp. 1545–
1554.

[5] Dong Liu, Youxi Wu, He Jiang, FP-ELM: An online sequential learning algo-
rithm for dealing with concept drift, Neurocomputing 207 (2016) 322–334.

[6] H. Wang, Wei Fan, P.S. Yu, J. Han, Mining concept-drifting data streams using
ensemble classifiers, in: Proceedings of the nineth ACM SIGKDD International
conference on Knowledge discovery and data mining (KDD’03), ACM, Wash-
ington, DC, USA, 2003, pp. 226–235.

[7] W. Nick Street, YongSeog Kim, A streaming ensemble algorithm (SEA) for
large-scale classification, in: Proceedings of the seventhACMSIGKDD Interna-
tional conference on Knowledge discovery and data mining (KDD’01),, ACM,
San Francisco, CA, USA, 2001, pp. 377–382.

[8] J. Zico Kolter, Marcus A. Maloof, Dynamic weighted majority: An ensemble
method for drifting concepts, J. Mach. Learn. Res. 8 (2007) 2755–2790.

[9] JinXing Che, YouLong Yang, Li Li, YanYing Li, SuLing Zhu, A modified support
vector regression: Integrated selection of training subset and model, Appl.
Soft Comput. 53 (2017) 308 – 322.

[10] G. Folino, C. Pizzuti, G. Spezzano, Ensembles for large scale data classification,
IEEE Trans. Evol. Comput. 10 (5) (2006) 604–616.

[11] Gianluigi Folino, Giuseppe Papuzzo, Handling different categories of concept
drifts in data streams using distributed GP, in: Anna Isabel Esparcia-Alcázar,
Anikó Ekárt, Sara Silva, Stephen Dignum, A. Şima Uyar (Eds.), Genetic Pro-
gramming, in: Lecture Notes in Computer Science, vol. 6021, Springer, 2010,
pp. 74–85.

[12] AngelineWong, LeejayWu, Phillip B. Gibbons, Christos Faloutsos, Fast estima-
tion of fractal dimension and correlation integral on stream data, Inf. Process.
Lett. 93 (2) (2005) 91–97.

[13] Malcolm I. Heywood, Evolutionary model building under streaming data for
classification tasks: opportunities and challenges, Genetic Programm. Evolv-
able Mach. (2014) 1–44.

[14] Daniel Barbará, Chaotic Mining: Knowledge Discovery Using the Fractal Di-
mension, in: 1999 ACMSIGMODWorkshop on Research Issues in DataMining
and Knowledge Discovery, 1999.

[15] Guopin Lin, Leisong Chen, A grid and fractal dimension-based data stream
clustering algorithm, Inf. Sci. Eng. Int. Symp. 1 (2008) 66–70.

[16] Elaine Parros Machado Sousa, Marcela Xavier Ribeiro, Agma Juci Machado
Traina, Caetano Traina Jr., Tracking the Intrinsic Dimension of Evolving Data
Streams to Update Association Rules, in: 3rd International Workshop on
Knowledge Discovery from Data Streams, part of the 23th International
Conference on Machine Learning (ICML06), 2006.

http://refhub.elsevier.com/S1568-4946(18)30641-0/sb1
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb1
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb1
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb2
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb2
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb2
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb3
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb3
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb3
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb4
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb4
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb4
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb4
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb4
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb4
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb4
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb4
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb4
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb5
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb5
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb5
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb6
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb6
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb6
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb6
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb6
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb6
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb6
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb7
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb7
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb7
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb7
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb7
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb7
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb7
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb8
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb8
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb8
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb9
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb9
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb9
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb9
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb9
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb10
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb10
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb10
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb11
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb11
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb11
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb11
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb11
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb11
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb11
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb11
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb11
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb12
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb12
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb12
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb12
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb12
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb13
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb13
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb13
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb13
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb13
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb14
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb14
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb14
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb14
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb14
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb15
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb15
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb15
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb16
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb16
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb16
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb16
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb16
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb16
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb16
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb16
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb16


G. Folino, M. Guarascio and G. Papuzzo / Applied Soft Computing Journal 75 (2019) 284–297 297

[17] Bartosz Krawczyk, Leandro L. Minku, Joo Gama, Jerzy Stefanowski, Micha
Woniak, Ensemble learning for data stream analysis: A survey, Inf. Fusion 37
(C) (2017) 132–156.

[18] Heitor Murilo Gomes, Jean Paul Barddal, Fabrício Enembreck, Albert Bifet,
A survey on ensemble learning for data stream classification, ACM Comput.
Surv. 50 (2) (2017) 23:1–23:36.

[19] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, Abdelhamid
Bouchachia, A survey on concept drift adaptation, ACM Comput. Surv. 46 (4)
(2014) 44:1–44:37.

[20] Rodrigo Coelho Barros, Márcio Porto Basgalupp, André Carlos Ponce Leon Fer-
reira de Carvalho, Alex Alves Freitas, A survey of evolutionary algorithms for
decision-tree induction, IEEE Trans. Syst. Man, Cybern. Part C 42 (3) (2012)
291–312.

[21] Tatiana Escovedo, Adriano Koshiyama, Andre Abs da Cruz, Marley Vellasco,
DetectA: abrupt concept drift detection in non-stationary environments,
Appl. Soft Comput. 62 (2018) 119 – 133.

[22] Fang Chu, Carlo Zaniolo, Fast and light boosting for adaptive mining of data
streams, in: Honghua Dai, Ramakrishnan Srikant, Chengqi Zhang (Eds.), Pro-
ceedings of the 8th Pacific-Asia Conference (PAKDD 2004), May 26-28, 2004,
Proceedings, in: LNAI, 3056, Springer Verlag, Sydney, Australia, 2004, pp. 282–
292.

[23] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thu-
raisingham, Classification and novel class detection in concept-drifting data
streams under time constraints, IEEE Trans. Knowl. Data Eng. 23 (6) (2011)
859–874.

[24] Hanady Abdulsalam, David B. Skillicorn, Patrick Martin, Classification using
streaming random forests, IEEE Trans. Knowl. Data Eng. 23 (1) (2011) 22–36.

[25] Leo Breiman Statistics, Leo Breiman, Random forests, in: Machine Learning,
2001, pp. 5–32.

[26] C. Alippi, G. Boracchi,M. Roveri, Just-in-time classifiers for recurrent concepts,
IEEE Trans. Neural Netw. Learn. Syst. 24 (4) (2013) 620–634.

[27] Leandro L. Minku, Allan P. White, Xin Yao, The impact of diversity on online
ensemble learning in the presence of concept drift, IEEE Trans. Knowl. Data
Eng. 22 (5) (2010) 730–742.

[28] Silas Garrido Teixeira de Carvalho Santos, Roberto Souto Maior de Barros,
PauloMauricioGonçalves Júnior, Optimizing the parameters of drift detection
methods using a genetic algorithm, in: 27th IEEE International Conference on
Tools with Artificial Intelligence, ICTAI 2015, Vietri sul Mare, Italy, November
9-11, 2015, 2015, pp. 1077–1084.

[29] Murray Smith, Vic Ciesielski, Adapting to concept drift with genetic pro-
gramming for classifying streaming data, in: IEEE Congress on Evolutionary
Computation, CEC 2016, Vancouver, BC, Canada, July 24-29, 2016, 2016, pp.
5026–5033.

[30] Sara Khanchi, Malcolm I. Heywood, A. Nur Zincir-Heywood, Properties of a
GP active learning framework for streaming data with class imbalance, in:
Proceedings of theGenetic and Evolutionary Computation Conference, GECCO
2017, Berlin, Germany, July 15-19, 2017, 2017, pp. 945–952.

[31] Ali Vahdat, Jillian Morgan, Andrew R. McIntyre, Malcolm I. Heywood, A. Nur
Zincir-Heywood, Tapped delay lines for GP streaming data classification with
label budgets, in: Genetic Programming - 18th European Conference, EuroGP
2015, Copenhagen, Denmark, April 8-10, 2015, Proceedings, 2015, pp. 126–
138.

[32] Jesus L. Lobo, Javier Del Ser, Miren Nekane Bilbao, Cristina Perfecto, Sancho
Salcedo-Sanz, DRED: An evolutionary diversity generation method for con-
cept drift adaptation in online learning environments, Appl. Soft Comput. 68
(2018) 693 – 709.

[33] Gianluigi Folino, Clara Pizzuti, Giandomenico Spezzano, Mining distributed
evolving data streams using fractal GP ensembles, in: EuroGP, 2007, pp. 160–
169.

[34] Y. Freund, R. Scapire, Experiments with a new boosting algorithm, in: Pro-
ceedings of the 13th Int. Conference onMachine Learning, 1996, pp. 148–156.

[35] Leo Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140.
[36] J. Ross Quinlan, Bagging, Boosting, and C4.5, in: Proceedings of the 13th

National Conference on Artificial Intelligence AAAI96, Mit Press, 1996, pp.
725–730.

[37] David H. Wolpert, Stacked generalization, Neural Netw. 5 (1992) 241–259.
[38] Tin Kam Ho, The random subspace method for constructing decision forests,

IEEE Trans. Pattern Anal. Mach. Intell. 20 (8) (1998) 832–844.
[39] John R. Koza, Genetic Programming - on the Programming of Computers by

Means of Natural Selection, in: Complex adaptive systems, MIT Press, 1993,
pp. I–XVIII, 1–419.

[40] Dilip P. Ahalpara, Jitendra C. Parikh, Genetic Programming based approach for
Modeling Time Series data of real systems, Int. J. Mod. Phys. C 19 (1) (2008)
63–91.

[41] E. Benkhelifa, G. Dragffy, A.G. Pipe, M. Nibouche, Design innovation for real
world applications, using evolutionary algorithms, in: Andy Tyrrell (Ed.),
2009 IEEE Congress on Evolutionary Computation, in: IEEE Computational
Intelligence Society, IEEE Press, Trondheim, Norway, 2009.

[42] Gregory. S. Hornby, Jason D. Lohn, Derek S. Linden, Computer-automated
evolution of an X-band antenna for NASA’s space technology 5 mission,
Evolutionary Computation 19 (1) (2011) 1–23.

[43] Yi-Shian Lee, Lee-Ing Tong, Forecasting energy consumption using a grey
model improved by incorporating genetic programming, Energy Convers.
Manage. 52 (1) (2011) 147–152.

[44] Jing Gao, Wei Fan, Jiawei Han, On appropriate assumptions to mine data
streams: analysis and practice, in: Proceedings of the 2007 Seventh IEEE In-
ternational Conference on Data Mining, IEEE Computer Society, Washington,
DC, USA, 2007, pp. 143–152.

[45] Gerhard Widmer, Miroslav Kubat, Learning in the presence of concept drift
and hidden contexts, Mach. Learn. 23 (1) (1996) 69–101.

[46] T. Ryan Hoens, Robi Polikar, Nitesh V. Chawla, Learning from streaming data
with concept drift and imbalance: an overview, Prog. Artif. Intell. 1 (1) (2012)
89–101.

[47] B. Mandelbrot, The Fractal Geometry of Nature, W.H Freeman, New York,
1983.

[48] P. Grassberger, Generalized dimensions of strange attractors, Phys. Lett. 97A
(1983) 227–230.

[49] M. Tykierko, Using invariants to change detection in dynamical system with
chaos, Physica D 237 (2008) 6–13.

[50] J. Sarraille, Lin S. Myers, FD3: A program for measuring fractal dimension,
Educ. Psychol. Meas. 54 (1) (1994) 94–97.

[51] L. Liebovitch, T. Toth, A fast algorithm to determine fractal dimensions by box
counting, Phys. Lett. 141A (8) (1989).

[52] Ludmila I. Kuncheva, Diversity in multiple classifier systems, Inf. Fusion 6 (1)
(2005) 3–4.

[53] Xiaojin Zhu, AndrewB. Goldberg, Ronald Brachman, ThomasDietterich, Intro-
duction to Semi-Supervised Learning, Morgan and Claypool Publishers, 2009.

[54] Paulo Mauricio Gonçalves Jr., Silas Garrido Teixeira de Carvalho Santos,
Roberto Souto Maior de Barros, Davi Carnauba De Lima Vieira, A comparative
study on concept drift detectors, Expert Syst. Appl. 41 (18) (2014) 8144–8156.

[55] Kyosuke Nishida, Koichiro Yamauchi, Detecting concept drift using statistical
testing, in: Discovery Science, Springer, 2007, pp. 264–269.

[56] Albert Bifet, Ricard Gavalda, Learning from time-changing data with adaptive
windowing, in: SDM, Vol. 7, SIAM, 2007, p. 2007.

[57] Joao Gama, PedroMedas, Gladys Castillo, Pedro Rodrigues, Learningwith drift
detection, in: In SBIA Brazilian Symposium on Artificial Intelligence, Springer
Verlag, 2004, pp. 286–295.

[58] Janez Demsar, Statistical comparisons of classifiers over multiple data sets, J.
Mach. Learn. Res. 7 (2006) 1–30.

[59] Simon Harding, Wolfgang Banzhaf, Fast genetic programming on GPUs, in:
EuroGP’07, Springer-Verlag, 2007, pp. 90–101.

http://refhub.elsevier.com/S1568-4946(18)30641-0/sb17
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb17
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb17
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb17
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb17
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb18
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb18
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb18
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb18
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb18
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb19
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb19
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb19
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb19
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb19
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb20
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb20
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb20
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb20
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb20
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb20
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb20
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb21
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb21
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb21
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb21
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb21
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb22
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb22
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb22
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb22
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb22
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb22
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb22
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb22
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb22
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb23
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb23
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb23
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb23
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb23
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb23
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb23
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb24
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb24
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb24
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb25
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb25
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb25
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb26
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb26
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb26
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb27
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb27
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb27
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb27
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb27
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb28
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb28
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb28
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb28
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb28
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb28
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb28
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb28
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb28
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb29
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb29
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb29
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb29
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb29
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb29
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb29
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb30
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb30
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb30
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb30
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb30
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb30
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb30
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb31
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb31
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb31
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb31
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb31
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb31
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb31
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb31
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb31
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb32
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb32
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb32
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb32
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb32
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb32
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb32
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb33
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb33
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb33
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb33
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb33
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb34
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb34
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb34
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb35
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb36
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb36
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb36
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb36
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb36
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb37
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb38
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb38
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb38
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb39
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb39
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb39
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb39
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb39
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb40
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb40
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb40
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb40
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb40
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb41
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb41
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb41
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb41
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb41
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb41
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb41
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb42
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb42
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb42
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb42
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb42
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb43
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb43
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb43
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb43
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb43
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb44
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb44
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb44
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb44
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb44
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb44
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb44
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb45
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb45
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb45
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb46
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb46
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb46
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb46
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb46
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb47
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb47
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb47
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb48
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb48
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb48
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb49
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb49
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb49
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb50
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb50
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb50
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb51
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb51
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb51
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb52
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb52
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb52
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb53
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb53
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb53
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb54
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb54
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb54
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb54
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb54
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb55
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb55
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb55
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb56
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb56
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb56
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb57
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb57
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb57
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb57
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb57
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb58
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb58
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb58
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb59
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb59
http://refhub.elsevier.com/S1568-4946(18)30641-0/sb59

	Exploiting fractal dimension and a distributed evolutionary approach to classify data streams with concept drifts
	Introduction
	Literature overview
	Our approach
	Organization of the paper

	Related Works
	Background
	Ensemble approaches for data classification
	The distributed GP tool

	Concept Drifts and Fractal dimension
	Concept drifts and detection function
	Exploiting fractal dimension as detection function

	The proposed framework for detecting concept drifts and classifying data streams
	The architecture of the framework
	The distributed GP classifier algorithm 
	The drift detection module
	Velocity of the stream and delay

	Performance Evaluation
	Datasets and Parameters
	Concept drift detection analysis
	Classification accuracy: the effect of delay
	Classification accuracy: the effect of drift detection
	Classification accuracy: comparing with different drift detection strategies
	Comparison with the Random Forest algorithm

	Discussion
	Conclusions
	References


