
Evolving Meta-Ensemble of Classifiers for Handling

Incomplete and Unbalanced Datasets in the Cyber

security Domain

G. Folino and F. S. Pisani

ICAR-CNR Istituto di Calcolo e Reti ad Alte Prestazioni
Via P. Bucci, 87036 Rende (CS)–Italy

Abstract

Cyber security classification algorithms usually operate with datasets pre-
senting many missing features and strongly unbalanced classes. In order to
cope with these issues, we designed a distributed Genetic Programming (GP)
framework, named CAGE-MetaCombiner, which adopts a meta-ensemble
model to operate efficiently with missing data. Each ensemble evolves a func-
tion for combining the classifiers, which does not need of any extra phase of
training on the original data. Therefore, in the case of changes in the data,
the function can be recomputed in an incremental way, with a moderate
computational effort; this aspect together with the advantages of running
on parallel/distributed architectures make the algorithm suitable to operate
with the real time constraints typical of a cyber security problem. In addi-
tion, an important cyber security problem that concerns the classification of
the users or the employers of an e-payment system is illustrated, in order to
show the relevance of the case in which entire sources of data or groups of
features are missing. Finally, the capacity of approach in handling groups
of missing features and unbalanced datasets is validated on many artificial
datasets and on two real datasets and it is compared with some similar ap-
proaches.

1. Introduction

In the last few years, as a consequence of our interconnected society,
the interest in cyber security problems has really been increasing and cyber
crime seriously threatens national governments and the economy of many

Preprint submitted to Elsevier May 30, 2016

industries[1]. Indeed, computer and network technologies have intrinsic se-
curity vulnerabilities, i.e., protocol, operating system weaknesses, etc. There-
fore, potential threats and the related vulnerabilities need to be identified and
addressed to minimize the risks. In addition, computer network activities,
human actions, etc. generate large amounts of data and this aspect must be
seriously taken into account.

Data mining techniques could be used to fight efficiently, to alleviate the
effect or to prevent the action of cybercriminals, especially in the presence of
large datasets. In particular, classification can be used efficiently for many
cyber security applications, i.e. classification of the user behavior, risk and
attack analysis, intrusion detection systems, etc. However, in this particular
domain, datasets often have different number of features and each attribute
could have different importance and cost. Furthermore, the entire system
must also work if some features are missing and/or the classes are unbal-
anced. Therefore, a single classification algorithm performing well for all the
datasets would be really unlikely, especially in the presence of changes and
with constraints of real time and scalability.

In the ensemble learning paradigm [2][3], multiple classification models
are trained by a predictive algorithm, and then their predictions are com-
bined to classify new tuples. This paradigm presents a number of advantages
with regard to using a single model, i.e., it reduces the variance of the error,
the bias, and the dependence on a single dataset and works well in the case
of unbalanced classes; furthermore, the ensemble can be build in an incre-
mental way and can be easily implemented on a distributed environment. If
we consider a stream of data, the ensemble needs to be re-trained to take
into account changes in the data. This process could be computationally
expensive, especially if it is necessary to retrain the models or to regenerate
new models on the new data.

Therefore, in order to classify large datasets in the field of cyber secu-
rity, usually having the above-cited issues of unbalanced classes and missing
features, a new framework, named CAGE-MetaCombiner, is proposed. The
framework extends a well-known implementation of distributed GP (CellulAr
GEnetic programming (CAGE) environment) and adopts a meta-ensemble
model in order to cope with missing data, while the GP system, which evolves
the combiner function of the ensemble, permits to handle unbalanced classes
thanks to a weighted fitness function. In practice, an ensemble is built for
each group of likely missing features, as explained in the following, and the
different ensembles perform a weighted vote in order to decide the correct

2

class. Each ensemble evolves a function for combining the classifiers, which
can be trained only on a portion of the training set and does not need any
extra phase of training on the original data. In fact, in the case of changes in
the data, the function can be recomputed in an incremental way, with a mod-
erate computational effort. In addition, all the phases of the algorithm are
distributed and can exploit the advantages of running on parallel/distributed
architectures to cope with real time constraints.

The rest of the paper is structured as follows: in Section 2 presents some
related works; in Section 3, a real scenario in the field of cyber security is
illustrated; Section 4 is devoted to some background information concerning
the problem of missing data and incomplete datasets and the ensemble of
classifiers; in Section 5, the framework and its software architecture is il-
lustrated; Section 6 shows a number of experiments conducted to verify the
effectiveness of the approach and to compare it with other similar approaches;
finally, Section 7 concludes the work.

2. Related Works

Evolutionary algorithms have been used mainly to evolve and select the
base classifiers composing the ensemble [5][6] or adopting some time-expensive
algorithms to combine the ensemble [7]; however, a limited number of papers
concerns the evolution of the combining function of the ensemble by using
GP.

In the following, we analyze two groups of approaches. The first group
comprises GP-based ensembles used to evolve the combination function.
Most of the analyzed approaches employ a high number of resources to
generate the function and therefore, their usage is not particularly recom-
mended for large real datasets. The approaches of the second group adopt
the ensemble paradigm to cope with incomplete and/or unbalanced data, but
differently from our work, require to use the training set also in the phase of
generating the combiner function, with a considerable overhead in this phase.
The only exception is the last analyzed paper, which does not use the train-
ing set in this phase; however, it builds a number of random subsets of the
features of the original dataset and therefore, its application is problematic
when the number of features is high.

Chawla et al. [8] propose an evolutionary algorithm to combine the en-
semble, based on a weighted linear combination of classifiers predictions,
using many well-known data mining algorithm as base classifiers, i.e. J48,

3

NBTree, JRip, etc. In [9], the authors extend their work in order to cope
with unbalanced datasets. In practice, they increase the total number of
base classifiers and adopt an oversampling technique. In [10], the authors
consider also the case of a homogenous ensemble and show the effect of a
cut-off level on the total number of classifiers used in the generated model.
In [11], the authors develop a GP-based framework to evolve the fusion func-
tion of the ensemble both for heterogeneous and homogeneous ensemble. The
approach is compared with other ensemble-based algorithms and the general-
ization properties of the approach are analyzed together with the frequency
and the type of the classifiers presents in the solutions. These works can
also operate on incomplete datasets, but differently from our approach, use
an oversampling technique. In addition, they do not take into account the
problems concerning the unbalanced datasets, while our technique permits
to efficiently handle them by considering different weights derived from the
performance of the classifiers on the training sets.

In [12], Brameier and Banzhaf use linear genetic programming to evolve
teams of ensembles. A team consists of a predefined number of heterogeneous
classifiers. The aim of a genetic algorithm is to find the best team, i.e. the
team obtaining the highest accuracy on the given datasets. The prediction of
the team is the combination of individual predictions and it is based on the
average or the majority voting strategy, also considering predefined weights.
The errors of the individual members of the team are incorporated into the
fitness function, so that the evolution process can find the team with the best
combination of classifiers. Differently from our approach, the recombination
of the team members is not completely free, but only a maximum pre-defined
percentage of the models can be changed. In our approach, GP generates
tree-based models and the number of base classifiers in the tree is not prede-
fined; therefore, the evolution process can freely select the best combination
of the base classifiers.

Chen et al. [14] use multiple ensembles to classify incomplete datasets.
Their strategy consists in partitioning the incomplete datasets in multiple
complete sets and in training the different classifiers on each sample. Then,
the predictions of all the classifiers could be combined according to the ratio
between the number of features in this subsample and the total features of
the original dataset. This approach is orthogonal to our and therefore, it
could be included in our system.

Another approach to cope with incomplete datasets can be found in [13].
The authors build all the possible LCP (Local Complete Pattern), i.e., a

4

partition of the original datasets into complete datasets, without any miss-
ing features; a different classifier is built on each LCP, and then they are
combined to predict the class label, basing on a voting matrix. The exper-
iments compared the proposed approach with two techniques to cope with
missing data, i.e., deletion and imputation, on small datasets and show how
the approach outperforms the other two techniques. However, the phase of
building the LCP could be really expensive.

Learn++.MF [15] is an ensemble-based algorithm with base classifiers
trained on a random subset of the features of the original dataset. The ap-
proach generates a large number of classifiers, each trained on a different
feature subset. In practice, the instances with missing attributes are classi-
fied by the models generated on the subsets of the remaining features. Then,
the algorithm uses a majority voting strategy in order to assign the correct
class under the condition that at least one classifier must cover the instance.
When the number of attributes is high, it is unfeasible to build classifiers with
all the possible sets of features; therefore, the subset of the features is iter-
atively updated to favor the selection of those features that were previously
undersampled. However, this limits the real applicability of the approach to
datasets with a low number of attributes.

3. A real scenario: classification of user profiles in e-payment sys-
tems.

The inspiration of the approach taken in this paper comes from a project
on cyber security for e-payment systems, in which one of the main tasks
consists in dividing the users of an e-payments systems into homogenous
groups on the basis of their weakness or vulnerabilities from the cyber security
point of view. In this way, the provider of an e-payment system can conduct
a different information and prevention campaign for each class of users, with
obvious advantages in terms of time and cost savings.

This technique is usually named segmentation, i.e. to the process of clas-
sifying customers into homogenous groups (segments), so that each group
of customers shares enough characteristics in common to make it viable for
a company to design specific offerings or products for it. It is based on a
preliminary investigation in order to individuate the variables (segmenta-
tion variables) necessary to distinguish one class of customers from others.
Typically, the goal is to increase the purchases and/or to improve customer
satisfaction.

5

Different techniques can be employed to perform this task; in order to
cope with large datasets, the most used are based on data mining approaches,
mainly clustering and classification; anyway, many other techniques can be
employed (see [16] for a survey of these techniques).

Another issue to be considered in order to construct the different profiles
is the information collection process used to gather raw information about the
user, which can be conducted through direct user intervention, or implicitly,
through software that monitors user activity. Finally, profiles maintaining
the same information over time are considered static, in contrast to dynamic
profiles that can be modified or improved over time [17].

In the general case of computer user profiling, the entire audit source can
include information from a variety of sources, such as command line calls
issued by users, system calls monitoring for unusual application use/events,
database/file accesses, and the organization policy management rules and
compliance logs. The type of analysis used is primarily the modeling of
statistical features, such as the frequency of events, the duration of events,
the co-occurrence of multiple events combined through logical operators, and
the sequence or transition of events. An interesting approach to computer
user modeling is the process of learning about ordinary computer users by
observing the way they use the computer. In this case, a computer user
behavior is represented as the sequence of commands she/he types during
her/his work. This sequence is transformed into a distribution of relevant
subsequences of commands in order to find out a profile that defines its
behavior. The ABCD (Agent behavior Classification based on Distributions
of relevant events) algorithm discussed in [18] is an interesting approach using
this technique.

To summarize, in our scenario, first the classes, in which the users will be
divided, are individuated on the basis of their expertise in computer science
and in the domain of the e-payments systems. This is done because most of
the vulnerabilities are associated with the behavior and the practices corre-
lated with the knowledge of the computer and/or of the e-payment system.
Contrarily to the normal belief, a vulnerability study confirmed that soft-
ware developers are the most vulnerable to attacks [19]. Indeed, an excess
of confidence and the consequent download and installation of a number of
applications can cause vulnerabilities; in the same way, misconfigurations of
the system due to inconsistent application of security associated with a lack
of competency could abilitate other kinds of vulnerabilities.

Given these considerations, Figure 1 illustrates the scenario used in the

6

Figure 1: A scenario for collecting user data from different sources of information and/or
monitoring tools.

above-cited project. The information concerning the user is supplied by using
different sources of information or monitoring tools (i.e. generally automatic
software analyzing the action and the behavior of the users). Going more
into detail, user datasets can include demographic and education informa-
tion, e.g., name, age, country, education level, computer knowledge, task
knowledge, etc. and may also includes information concerning the contest
in which the users operate and the roles they have in the systems. In addi-
tion to these data, which usually do not change if we consider a reasonable
amount of time, the monitoring tool collects operational and behavioral data
(e.g. IP addresses from which users connect to the system, operating system
and browser used, the duration of the session, etc.), for which changes over
time should be also considered. Finally, we also collect user input (i.e., com-
mands entered using the keyboard or via GUI, using the mouse, etc.) This
information should be captured in a dynamic way, by logging user actions.
Unfortunately, all these kinds of data are not present for each user for clear
reasons of privacy and for a number of different motivations (i.e., we have
users with different roles and therefore, it is possible to monitor only some
types of user, some users do not want to give authorization to disclose some
data, etc.). Therefore, for different users, some sources are missing and this
problem must be faced efficiently in order to obtain an accurate classification.

However, the data and the results used in this project (used also for test-
ing the algorithms described in this paper) cannot be disclosed for reasons

7

of privacy. Therefore, in this paper a real dataset, with analogous charac-
teristics, concerning the creation of user profiles from sequences of UNIX
commands is used. It is the command-line data collected by Greenberg [20]
by using UNIX csh command interpreter. This data are classified into four
target groups, which represent a total of 168 male and female users, on the
basis of their experience in programming. The four classes used are: non-
programmer, novice programmers, experienced programmers and computer
scientist.

More detail and the formalization of this approach, in which groups of
features (typically coming from the same source of data) are missing, will be
given in the next section.

4. Background

In this section, we give some background information useful to under-
stand our approach, i.e. the main methods to cope with missing data and
incomplete datasets and a general schema for combining an ensemble of clas-
sifiers and the concept of ”non-trainable functions” that can be used in order
to combine an ensemble of classifiers without the need of a further phase of
training.

4.1. Incomplete datasets and missing data

Typically, there are some main patterns in missing data: missing com-
pletely at random (MCAR), to describe data, in which the complete cases
are a random sample of the originally dataset, i.e., the probability of a fea-
ture being missing is independent of the value of that or any other feature
in the dataset; missing at random (MAR) describe data that are missing for
reasons related to completely observed variables in the data set. Finally, the
MNAR case considers the probability that an entry will be missing depends
on both observed and unobserved values in the data set. Therefore, even if
MCAR is more easy to handle,we try to cope with the MAR case, as it is a
more realistic model and it is suitable to many real-world applications, i..e,
the scenario described in the previous section.

Data mining and in particular classification algorithms must handle the
problem of missing values on useful features. The presence of missing fea-
tures complicates the classification process, as the effective prediction may
depend heavily on the way missing values are treated. The performance is
strictly related to rates of missing data: a low rate (typically less than 5%) is

8

generally considered manageable, while higher rate can be very problematic
to handle.

In the scenario of the previous subsection, we can consider the missing val-
ues are present in both the training and the testing data as the same sources
of data are not available for all the users. However, in our approach, without
any loss of generality, we suppose that the training dataset is complete. Even
in the case of the presence of a moderate number of tuples presenting miss-
ing data, it can be reported to the previous case, simply by deleting all the
incomplete tuples. However, handling missing data by eliminating cases with
missing data will bias results, if the remaining cases are not representative
of the entire sample. Therefore, different techniques can be used to handle
these missing features (see [21] for a detailed list of them). In addition to
the above-mentioned strategy to remove any tuple with missing values, we
remember the option of using a classification algorithm, which can deal with
missing values in the training phase and the strategy of imputing all missing
values before training the classification algorithm, i.e., replace the missing
value with a meaningful estimate.

Indeed, in our particular problem, we are more interested in handling
groups of missing features, and consequently, we focus on constructing a
classifier on the incomplete dataset directly.

More formally, in our scenario, we have D1, D2, . . . , Dk datasets; typically
each dataset comes from a different source of data, but can be used to predict
the same class. Therefore, the corresponding ith tuple of the different datasets
can be used to predict the class of the same user. However, a particular tuple
of a dataset can be missing, i.e., all the features belonging to the same source
of data of that tuple are missing.

However, without any loss of generality, even a problem of missing fea-
tures of an incomplete dataset can be reported to the previous one, by group-
ing tuples with the same missing features.

If we consider a dataset
D = {(x1i, x2i, ..., xdi), i = 1..N}
the dataset is incomplete if at least one entry in [1, d] is missing.
For instance, consider the incomplete dataset represented in Table 1 con-

sisting of 6 tuples and 5 features.
This dataset can be partitioned in complete datasets by grouping fea-

tures having the same missing features. A possible partition could be the
following; D1 = {1, 4} considering the features x1, x2 and x5, D2 = {2, 5}
considering the features x1, x3, x4 and x5 and D3 = {3, 6} considering all

9

Table 1: An incomplete dataset of 6 tuples and 5 features.

N x1 x2 x3 x4 x5

1 ? ?
2 ?
3
4 ? ?
5 ?
6

the features. Then, each complete dataset obtained can be used as training
set for a classifier algorithm and the different models obtained can be used
to classify each tuple, as we will show in the description of our framework in
subsection 5.1. The problem of decomposing the dataset could become com-
plex whether the missing features follows a random pattern and cannot be
easily grouped in order to decompose the original datasets in a few complete
datasets. In this case, the technique illustrated in this paper is not adequate.
However, we want to remark that our pattern of missing data covers a large
number real applications in which a group of features come from the same
source of data and potentially can be all missing. For instance, consider the
real world dataset representing the oceanographic and surface meteorologi-
cal data, which support the prediction of El Niño cycles1,2. The data are
mainly supplied by moored buoys. However, there are many missing values
in the data for different reasons. First of all, a few buoys are able to measure
currents, rainfall, and solar radiation; so in many cases, this entire group of
values is missing. In addition, some buoys were commissioned earlier than
others, so all the data supplied in a given period of time by these buoys are
missing. Finally, for different motivations (bad weather, problems of commu-
nication, etc.) some buoys could not transmit their data for a given period
of time. Therefore, this is a typical example in which our approach could be
useful to handle the missing data.

1http://www.pmel.noaa.gov/tao
2http://archive.ics.uci.edu/ml/machine-learning-databases/el nino-

mld/el nino.data.html

10

4.2. Ensemble of classifiers and non-trainable functions

In this subsection, we show a general schema for combining an ensemble
of classifiers and introduce the concept of ”non-trainable functions” that can
be used in order to combine an ensemble of classifiers without the need of a
further phase of training.

The ensemble permits the combination of multiple (heterogenous or ho-
mogenous) models in order to classify new unseen instances. In practice,
after a number of classifiers are built usually using part of the dataset, the
predictions of the different classifiers are combined and a common decision
is taken. Different schemas can be considered to generate the classifiers and
to combine the ensemble, i.e. the same learning algorithm can be trained
on different datasets or/and different algorithms can be trained on the same
dataset. In this work, we follow the general approach shown in Figure 2, in
which different algorithms are used on the same dataset in order to build the
different classifiers/models.

Figure 2: The approach used in this work to combine the learners composing the ensemble.

Let S = {(xi, yi)|i = 1, . . . , N} be a training set where xi, called example
or tuple or instance, is an attribute vector with m attributes and yi is the
class label associated with xi. A predictor (classifier), given a new example,
has the task of predicting the class label for it.

Ensemble techniques build g predictors, each on a different training set,
then combine them together to classify the test set. As an alternative, the
g predictors could be built using different algorithms on the same/different
training set.

11

The widely used boosting algorithm, introduced by Schapire [22] and Fre-
und [23], follows a different schema; in order to boost the performance of any
“weak” learning algorithm, i.e. an algorithm that “generates classifiers which
need only be a little bit better than random guessing” [23], the method adap-
tively changes the distribution of the training set according to how difficult
each example is to classify.

This approach was successfully applied to a large number and types of
datasets; however, it has the drawback of needing to repeat the training
phase for a number of rounds and that could be really time-consuming for
large datasets. The applications and the datasets in hard domains, such
cyber security, have real-time requirements, which do not permit re-training
the base models. On the contrary, ensemble strategies following the schema
shown in Figure 2 do not need any further phase of training, whether the
functions used can be combined without using the original training set or not.
The majority vote is a classical example of this kind of combiner function.
Some types of combiner have no extra parameters that need to be trained
and consequently, the ensemble is ready for operation as soon as the base
classifiers are trained. These are named non-trainable combiners [24] and
could be used as functions in a genetic programming tree.

Before describing the GP framework used, here, we introduce some defi-
nitions useful to understand how the algorithm works.

Let x ∈ RN be a feature vector and Ω = {ω1, ω2 ..., ωc} be the set of the
possible class labels. Each classifier hi in the ensemble outputs c degrees
of support, i.e., for each class, it will give the probability that the tuple
belongs to that class. Without loss of generality, we can assume that all
the c degrees are in the interval [0, 1] that is, hi : RN → [0, 1]c. Denote by
Hi,j(x) the support that classifier hi gives to the hypothesis that x comes
from class ωj. The larger the support, the more likely the class label ωj.
A non-trainable combiner calculates the support for a class combining the
support values of all the classifiers. For each tuple x of the training set, and
considering g classifiers and c classes, a Decision Profile matrix DP can be
build as follow:

DP (x) =

H1,1(x) ... H1,j(x) ... H1,c(x)
Hi,1(x) ... Hi,j(x) ... Hi,c(x)
Hg,1(x) ... Hg,j(x) ... Hg,c(x)

where the element Hi,j(x) is the support for j-th class of i-th classifier.

12

The functions used in our approach simply combine the values of a single
column to compute the support for j-th class and can be defined as follow:

µj(x) = F [H1,j(x), H2,j(x), ..., Hg,j(x)]
For instance, the most simple function we can consider is the average,

which can be computed as: µj(x) = 1
g

∑g
i=1Hi,j(x)

The class label of x is the class with maximum support µ.

5. A distributed tool for evolving combining functions

In this section, we illustrate the software architecture and detail the
pseudo-code of the meta-ensemble approach; then, we show how the dis-
tributed GP framework used to evolve the combining function of the en-
semble works, including the nodes, the terminals and the fitness function
employed.

5.1. The software architecture of the meta-ensemble approach.

The overall software architecture of the meta-ensemble approach is il-
lustrated in Figure 3. Note that CAGE-MetaCombiner is able to work on
incomplete datasets (named D1, D2, . . . , Dk in the figure). It is worth notic-
ing that, as described in the background section, it is equivalent whether
each dataset comes from a different source of data, or they are obtained from
a partition of an incomplete dataset by removing groups of missing features.
The only strong assumption is that each corresponding tuple of the different
datasets is used to predict the same class, i.e., the class of the user of the
scenario shown in section 3. The corresponding tuple can be missing in one
or more datasets, but if it is missing in all the datasets, it will be discarded
and counted as a wrong prediction in the evaluation phase.

In practice, an ensemble is built for each dataset by using a distributed
GP tool, CAGE (better described in the next subsection), to generate the
combiner function (see Figure 5 for an example). The learning models (clas-
sifiers) composing the ensemble are taken from the well-known WEKA tool
(see subsection 6.1 for more details on the algorithms used). The different
ensembles perform a weighted vote in order to decide the correct class. It is
worth remembering that each ensemble evolves a function for combining the
classifiers, which does not need any extra phase of training on the original
data. The final classification is obtained computing the error using the same
formulae as the Adaboost.M2 algorithm used by the boosting algorithm, by

13

Figure 3: The software architecture of the meta-ensemble architecture.

computing the error of the entire ensemble instead of a single classifier as in
the original boosting algorithm.

The entire process is better detailed in the pseudocode in Figure 4. We
consider l base classifiers and k incomplete datasets. Each incomplete dataset
is partitioned into train, validation and test set. A number of classification
algorithms were trained on the training sets and only the best l (a predefined
threshold) are maintained and take part in the ensemble. Then, a decision
profile matrix is built for each classifier in order to optimize the subsequent
phase, in which the GP tool evolves the combiner function of the ensemble,
by using the validation set. A weight is associated with each ensemble on
the basis of the error of the ensemble on the validation set.

Afterwards, for each tuple x, for each possible class j and for each ensem-
ble i, the errors are computed using a weighted mean: µj(x) =

∑
wi∗Eij(x)∑

wi

and the final classification is obtained by using the formula class(x) =
argmaxj(µj(x))

if a tuple xi is missing, the corresponding ensemble Ei is discarded.
To summarize, if we consider a dataset partitioned into training, valida-

tion and test set, the approach works using the following steps.

1. The base classifiers are trained on the training set; then, a weight, pro-
portional to the error on the training set, is associated with each clas-

14

Let α be the total number of base classification algorithms.
Let l be the number of base classification algorithms effectively used.
Given a set of k incomplete datasets D1, D2, . . . , Dk, having respectively m1,m2, . . . ,mk tuples,
where the dataset Di = {Xi1

, Xi2
, . . . , Ximi

} and Xik
is a tuple {A1, A2, . . . , Ad, C}

where Ai is an attribute and the class C can have c possible values.
Note that each tuple Xik

can potentially be missing.

For each Di
Consider the dataset Di partitioned into train, validation and test set: Dtraini, Dvalidi and Dtesti
Train α different classification algorithms on Dtraini
Maintain the l classifiers obtaining the highest accuracy on the training set.
Build l decision profile matrices, one for each of the classifiers, DP1, DP2, . . . , DPl
using the respective validation set, one for each classifier of dimension |Dvalidi| × c
Run the distributed GP tool on the validation set Dvalidi in order to obtain
the combiner function of the ensemble.
Obtain an Ensemble Ei, a combiner function Fi and a weight Wi,
computed on the basis of the error of the given ensemble on the validation set.

end for each
Build the decision profile matrix DP of the entire ensemble E,
where each element Hi,j(x) is the support that classifier hi gives to the hypothesis
that the tuple x comes from class j.

Compute the weighted mean for each class j: µj(x) =

∑
wi∗Hij(x)∑

wi
on the test set.

Compute the class by using the formula class(x) = argmaxj(µj(x)).
Note that if a tuple Xik

is missing, the corresponding ensemble Ei does not participate

to the evaluation procedure for that tuple.

Figure 4: The pseudo-code of the algorithm.

sifier together with the support for each class, i.e. the decision support
matrix is built. This phase could be computationally expensive, but it
is performed in parallel, as the different algorithms are independent of
each other.

2. The combiner function is evolved by using the distributed GP tool,
CAGE, on the validation set. No extra computation on the data is
necessary, as validation is only used to verify whether the correct class
is assigned and consequently to compute the fitness function.

3. The final function is used to combine the base classifiers and classify
new data (test set). This phase can be performed in parallel, by par-
titioning the test set among different nodes and applying the function
to each partition.

5.2. A distributed tool to evolve combiner functions

The tool used to evolve the combining function is a distributed/parallel
GP implementation, named CellulAr GEnetic programming (CAGE) [4],
running both on distributed-memory parallel computers and on distributed
environments. The tool is based on the fine-grained cellular model.The over-
all population of the GP algorithm is partitioned into subpopulations of the
same size. Each subpopulation can be assigned to one processor and a stan-
dard (panmictic) GP algorithm is executed on it. Occasionally, the migration

15

process between subpopulations is carried out after a fixed number of gen-
erations. For example, the n best individuals from one subpopulation are
copied into the other subpopulations, thus allowing the exchange of genetic
information between populations. The model is hybrid and modifies the is-
land model by substituting the standard GP algorithm with a cellular GP
(cGP) algorithm. In the cellular model each individual has a spatial loca-
tion, a small neighborhood and interacts only within its neighborhood. The
main difference in a cellular GP, with respect to a panmictic algorithm, is
its decentralized selection mechanism and the genetic operators (crossover,
mutation) adopted.

This tool is used to evolve the combiner functions and obtain an overall
combiner function, which the ensemble will adopt to classify new tuples.
Implicitly, the function selects the more suitable classifiers/models to the
specific datasets considered.

5.3. Functions, terminals and fitness evaluation

In this subsection, we describe the model that our GP system uses in
order to combine the predictions of multiple base classifiers.

Differently from classical models in which the GP tool is used to evolve
the models, in our approach, the classifiers (with an associated weight pre-
viously computed on the training set) are the leaves of the tree, while the
combiner functions are placed on the nodes. In particular, the functions
chosen to combine the classifiers composing the ensemble are non-trainable
functions and are listed in the following: average, weighted average, multi-
plication, maximum and median. They can be applied to a different number
of classifiers, i.e. each function is replicated with a different arity, typically
from 2 to 5. The choice of this set of functions is due to the fact that most of
the papers adopting non-trainable functions use these combiners and obtain
good experimental results [24]. The only function we do not include in this
set was the product, which obviously does not perform well in the multi-class
case.

More formal details are supplied in the following.
The average function, used with an arity of 2, 3 and 5, is defined as:

µj(x) = 1
g

∑g
i=1 Hi,j(x).

The multiplication function (arity 2, 3 and 5) is defined as: µj(x) =∏g
i=1 Hi,j(x).
The maximum function returns the maximum support for 2, 3 and 5

classifiers and can be computed as: µj(x) = maxi {Hi,j(x)}.

16

The median function (arity 3 and 5) can be computed as: µj(x) =
mediani {Hi,j(x)}.

Finally, the weighted version of the average function uses the weights
computed during the training phase to give a different importance to the
models on the basis of the performance on the training set, and can be
computed as: µj(x) = 1∑g

i=1 wi,j

∑g
i=1wi,j ∗ Hi,j(x). For this function the

values of 2, 3 and 5 are chosen for the arity.

Figure 5: An example of the combiner function generated from the GP tool.

In order to better clarify, how the tree is built, in Figure 5, an example
of tree generated from the tool is illustrated.

As for the fitness function, it is simply computed as the error of the
ensemble on the validation set, i.e. the ratio between the tuples not correctly
classified and the total number of tuples. However, in the particular case of
unbalanced datasets, a weighted fitness is adopted. In practice, if a tuple
belonging to a minority class is misclassified, the fitness function is penalized
by a weight equal to the ratio between the total number of tuples and the
total number of tuples belonging to that class (to avoid really high weights,
if the weight exceeds the threshold value of 10, it is fixed to this threshold).
For the tuple belonging to the majority class, the penalty weight is fixed to
1, as in the case of balanced datasets.

6. Experimental Results

In this section, the experiments conducted to analyze the capacity of
our approach on coping with unbalanced datasets and on handling miss-

17

ing features are described together with the main parameters and the main
characteristics of the datasets used. In addition to a number of well-known
benchmark datasets, two real and hard datasets were used to validate the
approach: Unix dataset and KDD 99. The first was used to test the per-
formance of the algorithm for the case of missing features, while the latter
presents a distribution of the strongly unbalanced classes and therefore it is
useful to test the capacity of coping with unbalanced datasets. Finally, our
algorithm is compared with two correlated works: one for the case of missing
data and the other for the case of unbalanced classes.

6.1. Datasets and Parameter Settings

All the experiments were performed on a Linux cluster with 16 Itanium2
1.4GHz nodes, each with 2 GBytes of main memory and connected by a
Myrinet high performance network. No tuning phase has been conducted
for the GP algorithm, but the same parameters used in the original paper
[4] were used, listed in the following: a probability of crossover of 0.7 and of
mutation of 0.1, a maximum depth of 7, and a population of 132 individuals
per node. The algorithm was run on 4 nodes, using 1000 generations and
the original training set was partitioned among the 4 nodes. All the results
were obtained by averaging 30 runs.

In Table 2, the size, the number of features and classes and the percentage
of the minority class of the datasets used in the experiments are shown. In
Table 3, are illustrated the characteristics of three additional datasets, with
a significant number of features and used for the comparison of the capacity
of our framework in handling missing data with the work in [15].

These datasets present different characteristics in terms of number of at-
tributes and classes and were used to assess the capacity of our framework
to cope with unbalanced datasets; in fact, most of them have a distribution
of the tuples belonging to one or more really unbalanced classes, as is evi-
dent from the percentage of the minority class. The Covtype, M-Feat, OCR
and DNA datasets come from the UCI KDD Archive 3, the Pendigit and
the Satimage are taken from the UCI Machine Learning Repository4, the
Phoneme dataset is from the ELENA project5.

3http://kdd.ics.uci.edu/.
4http://www.ics.uci.edu/ mlearn/MLRepository.html
5ftp.dice.ucl.ac.be in the directory pub/neural/ELENA/databases.

18

Table 2: Description of datasets ordered by decreasing percentage of minority class.
Dataset Number of examples Number of features Number of Class Minority Class
Satimage 6,435 36 6 0.0972
Dna 3,190 61 3 0.2404
Phoneme 5,404 5 2 0.2938
Pendigits 10,992 16 10 0.0959
KDDCup 494,020 41 5 1.052e-4

Table 3: Description of the additional datasets used for the missing data experiments.
Dataset Number of examples Number of features Number of Class Partitions

OCR 5,620 62 10 3
M-Feat 2,000 216 10 4
Covtype 581,012 54 7 3

Each dataset is partitioned into three subsamples: 70% of original dataset
is used to train the classifiers, which will compose the ensemble, the remaining
30% is equally partitioned into two parts: validation and test set. The
validation part is used by the evolutionary algorithm to build the combination
function of the ensemble, while the error rate, i.e. the ratio of the number of
misclassified tuples to the total number of tuples, of the best tree is calculated
on the test partition. The learning algorithms are implemented in the WEKA
tool and the different models are built by using standard parameters.

More in detail, the algorithms used as classifiers in the experiments are
based on the WEKA implementation6 and are listed in the following: J48
(decision trees), K random tree, Function Tree (based on logistic regression)
JRIP rule learner (Ripper rule learning algorithm), ConjunctiveRule, NBTree
(Naive Bayes tree), Naive Bayes, DTNB (decision table with naive bayes),
1R classifier, logistic model trees, logistic regression, decision stumps and
1BK (k-nearest neighbor algorithm).

6.2. Comparing with other evolutionary strategies and meta-ensemble tech-
niques

As stated in the previous subsection, the GP framework is executed with-
out any tuning of the parameters. The only exception is due to the fact we
want to analyze (Table 4) the effect of the size of the combiner function on
the accuracy, i.e. the ratio of the number of correctly classified tuples to the

6http://www.cs.waikato.ac.nz/ml/weka

19

total number of tuples, varying the value of the parsimony factor. Generally,
when using GP-based algorithms, there are different methods to limit the
uncontrolled growth of the average size of an individual in the population
(bloat problem); the simplest way is to limit their maximum depth and to
punish individuals of excessive size. In the depth analysis presented in [25],
the effect of many other complex methods are experimentally tested, but
none of them results predominant over the other to justify the complexity
introduced. Therefore, we adopted the widely used method of parsimony,
consisting in simply adding to the fitness function a penalty given by the
product of a constant parameter (the parsimony factor) and of the overall
number of nodes and leaves of the genetic programming tree. Typically, the
higher the parsimony, the simpler the tree, but the accuracy could diminish.
The parsimony factor is varied using the values of 0 (no parsimony), 0.01
and 0.1.

Table 4: The error rate for different values of parsimony (0, 0.1 and 0.01), along with the
average number of classifiers and functions used in the best tree.

Dataset Parsimony Error Train Error Test Distinct Classifiers Total Classifiers Functions

Satimage
0 7.77 ± 0.60 9.08 ± 0.56 8.64 ± 0.79 78.44 ± 42.03 30.56 ± 15.01

0.01 7.46 ± 0.62 9.25 ± 0.58 7.26 ± 1.34 25.70 ± 11.49 11.10 ± 4.16
0.1 7.48 ± 0.41 9.09 ± 0.51 6.57 ± 1.54 14.46 ± 4.61 6.76 ± 2.45

Phoneme
0 8.27 ± 0.43 11.63 ± 1.30 8.70 ± 0.55 99.95 ± 74.63 38.85 ± 30.36

0.01 7.62 ± 0.65 11.14 ± 0.44 6.61 ± 1.41 26.15 ± 18.37 11.96 ± 6.98
0.1 7.80 ± 0.46 10.91 ± 0.51 5.53 ± 1.33 13.73 ± 5.47 7.00 ± 2.75

Pendigits
0 0.66 ± 0.22 0.74 ± 0.22 8.86 ± 0.33 71.30 ± 37.16 27.95 ± 14.82

0.01 0.60 ± 0.12 0.68 ± 0.12 6.13 ± 1.50 14.48 ± 7.84 6.10 ± 3.30
0.1 0.64 ± 0.10 0.67 ± 0.12 6.13 ± 1.08 10.40 ± 3.20 5.16 ± 2.35

Dna
0 2.46 ± 0.85 3.71 ± 1.05 8.48 ± 0.89 88.31 ± 92.59 33.86 ± 36.10

0.01 1.86 ± 0.15 3.48 ± 0.28 6.53 ± 0.92 11.70 ± 2.53 4.50 ± 1.25
0.1 1.82 ± 0.13 3.53 ± 0.22 6.26 ± 0.81 9.20 ± 1.75 4.30 ± 1.29

For each dataset, we compare experiments by using different values of
the parsimony factor and we highlight values having statistically significant
differences using the Friedman test. The critical value of the Friedman test
[26] is obtained from a chi-square distribution with two degree of freedom
and the number of cases considered is 30 for each set. A significancy level
of 5% is used. In all the tables in this Section, we use the following rules:
the parsimony value is underlined when the Friedman test, comparing ex-
periments with same value of parsimony but different values of the missing
data, presents statistically significant differences. The accuracy/error values
are marked in bold when the Friedman test, comparing experiments with
the same missing percentage but with different parsimony factors, presents

20

statistically significant differences.
In Table 4, as only the behavior of the algorithm when the parsimony

factor is changed is considered, values in bold represent significantly different
results in terms of parsimony. In two of the four datasets, the differences
in terms of error rates are significant statistically; however, the differences
are not remarkable. On the contrary, the size of the trees and the distinct
classifiers selected by the algorithm are greatly affected by the parsimony
factor. For this reason, we choose a parsimony factor of 0.1 for the other
experiments conducted on the following.

Table 5: Error rate for different strategies for the 4 datasets used in the experiments.
Satimage Phoneme Pendigits Dna

CAGE-MetaCombiner 9.09 10.91 0.67 3.53
EVEN 8.91 11.68 0.68 4.20
EVEN (cut-off = 0.8) 8.69 11.06 0.66 4.34
Majority Vote 10.52 15.85 0.98 4.20
Weighted Vote 10.40 15.04 0.93 4.32
Best classifier 10.60 12.59 0.89 4.82
Stacking NB 10.75 14.93 0.81 4.55
Stacking LR 9.72 11.12 0.82 5.03

In Table 5, CAGE-MetaCombiner is compared with the EVEN algorithm,
described in the related work section [10] and also with the meta-algorithms
used in the same paper. Note that EVEN uses a population size of 120 (the
number of classifiers) for 1000 generations. The results show that CAGE-
MetaCombiner obtain better or comparable accuracy for all the datasets;
however, we would like to remark that the number of classifiers used is con-
siderably smaller than the number of 120 used by the EVEN algorithm.
However, in the latter, a cut-off threshold is introduced and only those clas-
sifiers whose weights are above this threshold are allowed to participate in the
ensemble. The maximum value of cut-off used in the paper (0.8) and shown
in the table permits reduction of the number of classifiers to about 25% of
the original size, while our approach (see Table 4) using the parsimony value
of 0.1, obtains a better reduction of the number of classifiers (about 10%),
without any relevant reduction in the accuracy.

6.3. Experiments on the capacity of handling missing values

Two sets of experiments were performed in order to evaluate the ability of
the CAGE-MetaCombiner approach in handling missing features. The first
set analyzes the behavior of the algorithm when we vary the percentage of

21

tuples with missing data and the parsimony factor affecting the size of the
solutions. The second set compares our approach with a related work present
in the literature: the Learn++.MF framework [15], described in the related
work section.

For these experiments, in addition to the OCR, M-Feat and Pendigits
datasets, used by the Learn++.MF framework, we also used the Satimage,
Dna and Covtype datasets, which present a significant number of features. It
is worth remembering that we are interested in handling cases in which entire
groups of features are missing and not in coping with random patterns of
missing features. Therefore, as the features of the above-mentioned datasets
are logically divided into groups, we partitioned the datasets OCR, M-Feat,
Satimage, Pendigits, Dna and Covtype, respectively in 3, 4, 3, 2, 3 and 3
partitions, trying to not separate correlated (or coming from the same source)
attributes. Then, to simulate the missing data, for each partition a tuple can
be removed according to a probability threshold, i.e., this parameter controls
the percentage of tuples, which have missing attributes. For instance, if this
parameter is set to 10%, the entire partition of the features belonging to this
tuple has a probability of 0.1 to be missing. If all the partitions of a tuple
are missing, this tuple will be considered as an error of classification. We
choose the values for the threshold in the range 0-40%, with an interval of
10% with 0% means no missing data.

We would like to remark that the Covtype dataset is a real large dataset,
representing the prediction of forest cover type from cartographic variables
determined by the U.S. Forest Service and the U.S. Geological Survey. The
task of classifying this data set is not easy, especially in the presence of
missing attributes, as it contains 44 binary attributes out of 54 totals, rep-
resenting qualitative independent variables such as wilderness areas and soil
type.

Table 6 shows the error of classification of the CAGE-MetaCombiner algo-
rithm by varying the parsimony factor using the values of 0 (no parsimony),
0.1 and 0.4, using the above-defined percentages of missing features. There-
fore, we want to evaluate the effect of the two parameters: the parsimony
factor, to reduce the complexity of the overall meta-ensemble, and the per-
centage of missing values, to evaluate the capacity of the algorithm to handle
missing data. We conducted a Friedman test in the same way specified in the
previous subsection to highlight statistically significant differences. Varying
the parsimony, for each value of missing data, there is no significant difference
in most of the cases. On the contrary, by varying the percentage of missing

22

Table 6: The error rate of CAGE-MetaCombiner using three parsimony values and differ-
ent percentages of missing data.

Missing Percentage Classifiers
Dataset Pars. 0% 10% 20% 30% 40% Distinct Total Functions

OCR
0 5.43 ± 0.26 6.37 ± 0.21 7.90 ± 0.35 10.27 ± 0.37 14.16 ± 0.57 8.77 ± 0.12 84.80 ± 4.36 33.97 ± 0.21

0.1 5.36 ± 0.27 6.19 ± 0.28 7.65 ± 0.40 10.31 ± 0.39 13.99 ± 0.62 7.50 ± 0.22 21.20 ± 0.93 9.10 ± 0.64
0.4 5.30 ± 0.22 6.23 ± 0.20 7.54 ± 0.39 9.95 ± 0.35 13.85 ± 0.41 6.33 ± 0.19 11.63 ± 0.24 5.23 ± 0.41

Pendigits
0 4.96 ± 0.28 6.81 ± 0.34 10.21 ± 0.36 15.09 ± 0.29 21.31 ± 0.35 8.95 ± 0.05 104.75 ± 13.75 41.95 ± 3.25

0.1 4.97 ± 0.27 6.88 ± 0.19 10.12 ± 0.42 14.89 ± 0.19 21.35 ± 0.55 7.75 ± 0.35 25.55 ± 1.05 11.30 ± 0.30
0.4 5.20 ± 0.34 7.07 ± 0.40 10.49 ± 0.48 15.21 ± 0.50 21.24 ± 0.35 5.70 ± 0.60 11.05 ± 2.95 4.95 ± 1.25

Dna
0 7.33 ± 1.40 9.29 ± 1.45 11.91 ± 1.26 15.02 ± 0.94 18.98 ± 0.73 8.77 ± 0.19 85.33 ± 6.36 33.67 ± 2.72

0.1 7.86 ± 1.52 9.93 ± 1.16 12.55 ± 1.32 16.11 ± 1.30 20.10 ± 0.57 6.29 ± 1.23 18.17 ± 5.69 8.46 ± 1.94
0.4 7.31 ± 0.77 9.49 ± 0.65 12.05 ± 0.90 15.56 ± 0.83 19.21 ± 1.33 5.77 ± 0.38 9.47 ± 1.16 4.13 ± 0.80

M-Feat
0 4.85 ± 0.22 4.95 ± 0.24 5.35 ± 0.30 6.11 ± 0.44 7.70 ± 0.51 8.10 ± 0.12 53.80 ± 14.24 21.23 ± 5.58

0.1 4.93 ± 0.22 5.04 ± 0.18 5.32 ± 0.25 6.17 ± 0.41 7.66 ± 0.75 5.36 ± 0.29 9.94 ± 0.88 4.53 ± 0.85
0.4 4.78 ± 0.14 4.97 ± 0.20 5.20 ± 0.17 5.97 ± 0.28 7.64 ± 0.58 3.20 ± 1.27 4.28 ± 2.00 1.77 ± 1.16

Satimage
0 12.62 ± 0.23 12.84 ± 0.26 13.54 ± 0.28 15.05 ± 0.34 17.13 ± 0.40 8.80 ± 0.14 74.60 ± 13.45 30.53 ± 5.33

0.1 12.63 ± 0.17 12.86 ± 0.12 13.59 ± 0.20 15.02 ± 0.24 17.79 ± 0.31 7.07 ± 0.69 18.23 ± 1.24 8.47 ± 0.59
0.4 12.62 ± 0.20 12.86 ± 0.21 13.64 ± 0.20 14.84 ± 0.41 17.53 ± 0.56 5.30 ± 0.57 8.73 ± 0.73 3.40 ± 0.42

Covtype
0 21.95 ± 1.09 23.08 ± 0.89 24.54 ± 0.72 26.43 ± 0.54 28.95 ± 0.43 8.90 ± 0.08 123.87 ± 26.44 50.43 ± 9.73

0.1 21.81 ± 0.83 22.69 ± 0.50 24.22 ± 0.40 26.25 ± 0.32 28.80 ± 0.27 8.33 ± 0.12 57.00 ± 4.65 26.07 ± 2.04
0.4 21.71 ± 0.54 22.90 ± 0.45 24.38 ± 0.41 26.32 ± 0.33 28.89 ± 0.27 7.20 ± 0.36 32.27 ± 11.01 14.80 ± 4.81

data, the differences for the error rate are statistically significant with the
exception of the Covtype dataset for the cases of 30% and 40% of missing
data.

For all the datasets, and for a percentage of missing features up to 20%,
the degradation in accuracy is moderate (it is always less than 3%), while
using 30% or 40% as values of the threshold, the error has a remarkable
increase (in some cases, it arrives at 7%). More specifically, the error for the
M-Feat and for the Satimage dataset does not deteriorate much, even though
a threshold of 30% and 40% is used.

As for the covtype dataset, the number of distinct classifiers selected by
the algorithm does not vary much (from 7 to 9), while the average size of
the tree is substantially different; therefore, with a parsimony factor set to
0.4, the algorithm performs quite well and the size of the overall ensemble is
compact. Increasing the missing percentage threshold from 0% to 40%, the
degradation of the accuracy is limited. These results confirm the effectiveness
of CAGE-MetaCombiner in handling missing data.

The comparison between Learn++.MF and CAGE-MetaCombiner is eval-
uated on the three datasets, which are also used in [15] and the results are
shown in Table 7. For CAGE-MetaCombiner, the value of 0.4 is used for
the parsimony factor. For Learn++.MF, the number of missing features is
chosen to be equal to the size of the partition used by our algorithm.

Owing to the strategy of computing the base classifiers used by Learn++.MF
algorithm, the ability to handle missing data is determined by how many fea-

23

tures are missing. So the missing percentage values, reported in the original
paper, arrive at 30%, and in almost all cases both the algorithms are able to
classify each dataset with a reasonable accuracy. As for the M-Feat dataset,
the ’n/a’ value in the table means that no classifiers are usable for instances
with more of 30% of missing attributes for the Learn++.MF algorithm. This
limits the applicability of the algorithm for large percentages of missing data.
Anyway, for all the datasets, CAGE-MetaCombiner has better results then
Learn++.MF when missing data increase, and this is more evident when the
datasets have many features.

Table 7: Comparison between CAGE-MetaCombiner and Learn++.MF. nof represents
the number of missing features for each record of the dataset.

Percentage of Missing
10% 20% 30%

nof CageMC Learn++.MF CageMC Learn++.MF CageMC Learn++.MF
OCR 20 6.23 ± 0.20 3.50 ± 0.10 7.54 ± 0.39 8.20 ± 0.4 9.95 ± 0.35 13.50 ± 1.10

Pendigits7 8 7.07 ± 0.40 10 10.49 ± 0.48 13 15.21 ± 0.50 17
M-Feat 50 4.97 ± 0.20 6.62 ± 0.08 5.20 ± 0.17 7.44 ± 2.87 5.97 ± 0.28 n/a

6.4. Analysis on two real-world datasets: KDD 99 and Unix dataset.

In this section, we aim to test our framework on two-well known real
world datasets: KDD 99 and Unix dataset. The first is known to have really
unbalanced classes, while the latter represents the case study described in
Section 3 and is used to test the case of missing data.

One aspect of the framework to be analyzed is its capability of coping
with datasets with unbalanced classes. A typical example is the cyber secu-
rity problem of preventing intrusion in a system, trying to minimize the false
alarms. Typically, given a set of pre-processed features of a normal connec-
tion or of a possible attack, a classification algorithm is used to verify if it is
an attack or not. However, the problem is complex because a low number of
attacks compared to the normal connection is present in the data and that
makes it hard to apply general-purpose classification algorithms.

Therefore, we performed the same experiments as the previous subsection,
using one of the most used real dataset for the task of classification of intru-

7The value reported concerning the accuracy Learn++.MF for the Pendigit dataset
have been taken from a graph of the original paper, in which the values of the standard
deviation were not present.

24

sions: KDD Cup 19998. This dataset contains 494,020 records, representing
normal connections and 24 different attack types. Each attack is clustered
into four main categories, so each connection belongs to the following classes:
normal (normal, i.e., no attack), DoS (Denial of Service connections), R2L
(Remote to User, remote attacks addressed to gain local access), U2R (User
to Root, exploits used to gain root access) or Probe (probing attack to dis-
cover known vulnerabilities).

Table 8: The error rate for different values of parsimony (0, 0.1 and 0.01), along with the
average number of classifiers and functions used in the best tree: KDD Cup 99.

Pars. Error Distinct Cls Total Cls Functions DoS Normal Probe R2L U2R
0 0.0106 ± 0.0015 7.60 ± 0.71 65.23 ± 50.46 26.53 ± 19.03 0.0000 0.0003 0.0114 0.0506 0.2000

0.01 0.0105 ± 0.0012 6.20 ± 1.01 13.30 ± 6.76 5.80 ± 2.65 0.0000 0.0003 0.0109 0.0510 0.2333
0.1 0.0121 ± 0.0016 5.37 ± 0.80 9.03 ± 3.01 3.80 ± 1.45 0.0000 0.0003 0.0106 0.0490 0.2667

In Table 8, it is evident that the size of the trees and the distinct classifiers
selected by the algorithm strongly depends on the parsimony factor, while
for the accuracy the differences are not statistically significant.

However, we are more interested in the behavior of our approach for the
unbalanced datasets and in particular for the minority classes of the KDD
Cup dataset, i.e., Probe, R2L and U2R.

To this aim, we consider the work in [27], which describes a boosting
approach, named Greedy-Boost, to build an ensemble of classifiers based
on a linear combination of models, specifically designed to operate for the
intrusion detection domain. The main idea is to extend the boosting process
maintaining the models that behave better on the examples badly predicted
in the previous round of the boosting algorithm (while the classical algorithm
adjusts only the weights and not the models).

In Table 9, CAGE-MetaCombiner is compared with the Greedy-Boost
algorithm on the KDDCup 99 datasets and the precision and the recall values
are reported for all the classes. It is evident that our approach performs
better both for the precision and the recall measure, especially in the case of
the minority classes R2L and U2R.

The second real dataset tested is the Unix Users Data created by Green-
berg [20]. It contains the commands used in a Unix shell by 168 users with
different level of skills. Each user is assigned to one of four profiles: non-

8http://www.sigkdd.org/kdd-cup-1999-computer-network-intrusion-detection

25

Table 9: Precision and Recall for different strategies for the KDD Cup dataset. In the
first column, it is reported the class distribution for the test set.

Precision Recall
Class Distribution Greedy-Boost CAGE-MetaCombiner Greedy-Boost CAGE-MetaCombiner

DoS 0.7960 100.0 100.0 100.0 100.0
Normal 0.1936 99.1 99.9 100.0 100.0
Probe 0.0079 99.0 99.6 97.1 98.9
R2L 0.0023 93.2 98.5 71.9 94.9
U2R 4.85E-5 88.5 93.1 44.2 76.7

programmer, novice programmers, experienced programmers and computer
scientist.

This dataset is preprocessed in the same way used in [18]. For each user
we consider the first 100 and 500 commands used; then the commands sub-
sequences of fixed length (from 3 to 6) are extracted from the list. Each user
represents a record in the processed dataset and all the distinct subsequences
are used as record attribute and the attribute value is the number of times
the subsequence is typed by the user (0 means that the subsequence is never
typed).

In Table 10, we show the Cage-MetaCombiner performance on the Unix
dataset using different subsequence lengths and different percentage of miss-
ing data. The classification rate for the 100 commands experiment is slightly
better than for the case with 500 commands probably because the increase
in the number of commands could lead to an increment in the number of
features and consequently the training phase becomes harder than the pre-
vious case. Owing to the high number of features, the results are not much
affected by the missing rate, that is the algorithm has good performance with
all the percentages of missing data. In all the cases, the results show that
the algorithm presents comparable performances by using different values of
parsimony.

In Table 11 the results of comparison between Cage-MetaCombiner and
EvABCD are reported [18]. The EvABCD algorithm is a technique for clas-
sification of the behavior profiles of users. As Cage-MetaCombiner, it learns
different behaviors from training data. For a different profile, it builds one or
more prototypes computing the frequency of all the sequences of commands
with a defined length. Moreover, it updates the models in an incremen-
tal way. Our algorithm performs better than EvABCD in most cases. By
using Cage-MetaCombiner, the results for a different number of commands
extracted do not influence the accuracy much, while the EvABCD algorithm

26

Table 10: Classification accuracy (Percent) for Cage-MetaCombiner with the Unix dataset
using three parsimony values, different subsequence lengths and with different percentages
of missing data.

Commands Sequence Percentage of Missing

100

Parsimony 0% 10% 20% 30% 40% 80% Distinct Classifiers Total Classifiers Functions

3
0 83.96 ± 1.90 83.84 ± 3.68 83.70 ± 2.43 82.67 ± 2.91 82.64 ± 2.51 81.32 ± 2.21 7.75 ± 0.45 52.97 ± 9.42 21.62 ± 3.27

0.1 85.73 ± 1.22 84.00 ± 1.33 83.60 ± 1.95 83.57 ± 2.07 83.20 ± 2.82 81.69 ± 3.00 4.19 ± 0.31 6.73 ± 0.83 3.51 ± 0.32
0.4 84.16 ± 0.35 83.96 ± 1.20 83.90 ± 1.05 83.86 ± 1.64 83.49 ± 1.64 83.00 ± 2.92 3.41 ± 0.28 4.66 ± 0.39 2.49 ± 0.25

4
0 83.81 ± 3.97 83.70 ± 1.89 82.81 ± 1.72 82.54 ± 2.24 81.98 ± 3.65 81.82 ± 2.42 7.71 ± 0.28 44.79 ± 3.04 18.41 ± 1.17

0.1 83.86 ± 0.81 83.73 ± 1.24 83.20 ± 1.74 83.10 ± 1.73 82.89 ± 1.51 82.11 ± 3.01 4.50 ± 0.31 7.61 ± 1.51 3.75 ± 0.63
0.4 84.76 ± 0.53 84.19 ± 0.54 83.86 ± 0.93 83.76 ± 1.34 83.13 ± 1.70 81.65 ± 2.70 3.57 ± 0.33 4.68 ± 0.38 2.49 ± 0.18

5
0 83.37 ± 1.31 82.97 ± 1.54 82.67 ± 2.09 82.00 ± 2.41 81.92 ± 3.25 81.45 ± 2.34 7.52 ± 0.34 43.31 ± 8.23 17.79 ± 3.07

0.1 83.96 ± 0.74 83.93 ± 0.81 83.73 ± 1.46 83.33 ± 1.62 83.21 ± 2.02 82.51 ± 2.66 4.57 ± 0.40 7.40 ± 1.17 3.67 ± 0.51
0.4 85.14 ± 3.96 83.83 ± 1.15 84.29 ± 1.19 84.09 ± 1.64 83.33 ± 3.63 82.84 ± 2.23 3.77 ± 0.27 4.83 ± 0.58 2.64 ± 0.31

6
0 84.74 ± 3.96 84.09 ± 1.33 83.96 ± 1.89 83.86 ± 1.18 82.05 ± 3.08 81.19 ± 2.24 8.01 ± 0.24 51.23 ± 7.28 20.91 ± 2.51

0.1 85.06 ± 0.53 84.23 ± 0.99 84.26 ± 1.29 83.60 ± 1.32 83.09 ± 2.01 82.38 ± 2.43 4.54 ± 0.44 7.61 ± 1.44 3.83 ± 0.63
0.4 84.96 ± 0.74 84.19 ± 0.54 83.93 ± 0.55 83.85 ± 1.31 83.64 ± 1.72 82.21 ± 2.32 3.63 ± 0.13 4.77 ± 0.39 2.56 ± 0.16

500

3
0 86.70 ± 7.05 85.78 ± 5.83 85.58 ± 5.37 85.08 ± 5.07 85.02 ± 5.27 82.44 ± 3.05 7.87 ± 0.15 50.06 ± 5.56 20.38 ± 2.12

0.1 84.39 ± 7.36 84.08 ± 7.59 84.26 ± 6.93 83.80 ± 6.84 83.27 ± 5.38 82.01 ± 5.00 4.46 ± 0.65 7.55 ± 1.66 3.93 ± 0.80
0.4 90.56 ± 2.21 89.58 ± 5.58 88.86 ± 5.40 87.92 ± 5.38 87.46 ± 2.42 82.64 ± 3.51 3.03 ± 0.32 3.77 ± 0.57 2.12 ± 0.30

4
0 83.63 ± 1.22 82.78 ± 4.03 82.31 ± 3.44 82.25 ± 3.23 82.10 ± 2.27 82.08 ± 2.28 7.83 ± 0.14 57.41 ± 7.51 22.93 ± 3.28

0.1 83.86 ± 0.85 83.57 ± 2.15 82.93 ± 1.59 82.10 ± 2.12 81.91 ± 2.70 81.04 ± 3.28 4.21 ± 0.27 6.97 ± 0.84 3.71 ± 0.46
0.4 84.16 ± 0.80 83.96 ± 0.65 83.80 ± 1.26 83.43 ± 1.69 83.50 ± 1.74 82.84 ± 2.33 3.27 ± 0.15 4.46 ± 0.45 2.42 ± 0.22

5
0 83.48 ± 4.32 82.97 ± 2.83 82.88 ± 3.22 82.59 ± 2.86 82.54 ± 3.56 82.38 ± 2.60 7.96 ± 0.28 51.84 ± 11.70 21.03 ± 4.44

0.1 83.76 ± 1.04 83.73 ± 1.22 83.63 ± 1.51 83.30 ± 1.86 83.34 ± 2.08 82.11 ± 2.53 4.15 ± 0.34 6.84 ± 0.66 3.35 ± 0.43
0.4 84.26 ± 0.11 84.23 ± 0.67 83.93 ± 1.10 83.86 ± 1.43 83.13 ± 1.18 82.44 ± 1.91 3.43 ± 0.28 5.02 ± 0.46 2.67 ± 0.21

6
0 82.87 ± 1.47 82.42 ± 4.03 82.42 ± 4.21 82.08 ± 3.79 81.98 ± 2.13 80.86 ± 2.53 8.08 ± 0.24 54.59 ± 4.36 21.65 ± 1.69

0.1 83.76 ± 1.01 83.20 ± 1.41 83.17 ± 2.12 83.14 ± 2.36 83.10 ± 2.11 82.44 ± 2.68 4.47 ± 0.35 7.49 ± 0.96 3.80 ± 0.41
0.4 84.96 ± 0.74 84.36 ± 0.47 84.26 ± 1.90 84.13 ± 1.24 84.06 ± 1.01 82.48 ± 3.04 3.29 ± 0.15 4.29 ± 0.22 2.41 ± 0.09

improves its accuracy when using 500 commands.

Table 11: Comparison of the Cage-MetaCombiner vs the EvABCD algorithm for the Unix
dataset (classification accuracy).

Commands Sequence Cage-Combiner EvABCD

100

3 85.73 64.90
4 83.86 64.50
5 83.96 67.90
6 85.06 64.30

500

3 84.39 59.50
4 83.86 59.20
5 83.76 66.70
6 83.76 70.80

7. Conclusions and Future work

A meta-ensemble-based GP framework for classifying datasets in the cy-
ber security domain and a real scenario concerning the segmentation of the
users of an e-payment system, which illustrates the real applicability of the
approach, are presented. The GP system is used to evolve the combiner
function of the ensemble and permits to handle unbalanced classes thanks
to a weighted fitness function, while the ensembles are specialized to handle

27

the different groups of likely missing features. Therefore, the main advan-
tages of the framework are its capacity in handling groups of missing features
and unbalanced datasets and the possibility of operating in an incremental
way without the need for re-training on the original data. Experimental re-
sults conducted on artificial datasets and on two real datasets, demonstrate
the proposed system improves or is comparable to state-of-the-art ensemble-
based approaches, by using a smaller number of models. In particular, our
approach behaves well in the classification of the minority classes. Finally,
the accuracy does not degrade significantly when the percentage of missing
data increases.

Future works aims to test the framework on real cyber security datasets
and to extend the approach to work with streams of data.

Acknowledgment

This work has been partially supported by MIUR-PON under project
PON03PE 00032 2 within the framework of the Technological District on
Cyber Security.

References

[1] CERT Australia, Cyber crime and security survey report, Tech. rep.
(2012).

[2] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–
140.

[3] Y. Freund, R. Shapire, Experiments with a new boosting algorithm, in:
Machine Learning, Proceedings of the Thirteenth International Confer-
ence (ICML ’96), Morgan Kaufmann, 1996, pp. 148–156.

[4] G. Folino, C. Pizzuti, G. Spezzano, A scalable cellular implementation
of parallel genetic programming, IEEE Transactions on Evolutionary
Computation 7 (1) (2003) 37–53.

[5] D. F. de Oliveira, A. M. P. Canuto, M. C. P. de Souto, Use of
multi-objective genetic algorithms to investigate the diversity/accuracy
dilemma in heterogeneous ensembles, in: International Joint Conference
on Neural Networks, IEEE, 2009, pp. 2339–2346.

28

[6] G. Folino, C. Pizzuti, G. Spezzano, Training Distributed GP Ensemble
With a Selective Algorithm Based on Clustering and Pruning for Pattern
Classification, IEEE Trans. Evolutionary Computation 12 (4) (2008)
458–468.

[7] C. D. Stefano, G. Folino, F. Fontanella, A. S. di Freca, Using bayesian
networks for selecting classifiers in GP ensembles, Information Sciences
258 (2014) 200–216.

[8] J. Sylvester, N. V. Chawla, Evolutionary ensembles: Combining learning
agents using genetic algorithms, in: AAAI Workshop on Multiagent
Learning, 2005, pp. 46–51.

[9] N. Chawla, J. Sylvester, Exploiting diversity in ensembles: Improving
the performance on unbalanced datasets, in: Multiple Classifier Sys-
tems, 7th International Workshop, Springer, 2007, pp. 397–406.

[10] J. Sylvester, N. V. Chawla, Evolutionary ensemble creation and thin-
ning, in: Proceedings of the International Joint Conference on Neural
Networks, IJCNN 2006, IEEE, 2006, pp. 5148–5155.

[11] N. Acosta-Mendoza, A. Morales-Reyes, H. J. Escalante, A. Gago-Alonso,
Learning to assemble classifiers via genetic programming, IJPRAI 28 (7).

[12] M. Brameier, W. Banzhaf, Evolving teams of predictors with linear ge-
netic programming, Genetic Programming and Evolvable Machines 2 (4)
(2001) 381–407.

[13] Y. Wang, Y. Gao, R. Shen, F. Yang, Selective ensemble approach for
classification of datasets with incomplete values, in: Foundations of In-
telligent Systems, Springer, 2012, pp. 281–286.

[14] H. Chen, Y. Du, K. Jiang, Classification of incomplete data using classi-
fier ensembles, in: Systems and Informatics (ICSAI), 2012 International
Conference on, 2012, pp. 2229–2232.

[15] R. Polikar, J. DePasquale, H. S. Mohammed, G. Brown, L. I. Kuncheva,
Learn++. mf: A random subspace approach for the missing feature
problem, Pattern Recognition 43 (11) (2010) 3817–3832.

29

[16] D. Godoy, A. Amandi, User profiling in personal information agents: A
survey, Knowl. Eng. Rev. 20 (4) (2005) 329–361.

[17] S. Gauch, M. Speretta, A. Chandramouli, A. Micarelli, User profiles for
personalized information access, in: P. Brusilovsky, A. Kobsa, W. Nejdl
(Eds.), The Adaptive Web, Vol. 4321 of Lecture Notes in Computer
Science, Springer, 2007, pp. 54–89.

[18] J. A. Iglesias, P. P. Angelov, A. Ledezma, A. Sanchis, Creating evolving
user behavior profiles automatically, IEEE Trans. Knowl. Data Eng.
24 (5) (2012) 854–867.

[19] T. D. M. Ovelgonne, V.S. Subrahmanian, A. Prakash, Global cyber-
vulnerability report, in: Springer 2015, to appear.

[20] S. Greenberg, Using unix: Collected traces of 168 users, in: Research
Report 88/333/45., Department of Computer Science, University of Cal-
gary, Calgary, Canada., 1988.

[21] R. J. A. Little, D. B. Rubin, Statistical Analysis with Missing Data,
John Wiley & Sons, Inc., New York, NY, USA, 1986.

[22] R. E. Schapire, The strength of weak learnability, Machine Learning
5 (2) (1990) 197–227.

[23] R. E. Schapire, Boosting a weak learning by majority, Information and
Computation 121 (2) (1995) 256–285.

[24] L. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms,
Wiley-Interscience, 2004.

[25] S. Luke, L. Panait, A comparison of bloat control methods for genetic
programming, Evol. Comput. 14 (3) (2006) 309–344.

[26] J. Demsar, Statistical comparisons of classifiers over multiple data sets,
Journal of Machine Learning Research 7 (2006) 1–30.

[27] E. Bahri, N. Harbi, H. N. Huu, Approach based ensemble methods for
better and faster intrusion detection, in: 4th Int. Conf. on Computa-
tional Intelligence in Security for Information Systems, Springer, June
8-10, 2011, pp. 17–24.

30

