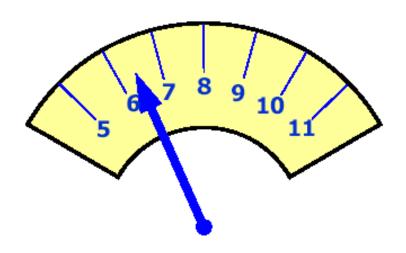
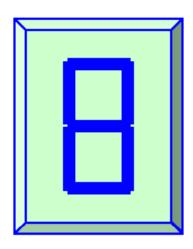
CODIFICA DI CARATTERI

- Associando un simbolo dell'alfabeto ad ogni numero possiamo codificare tutte le lettere
- Codifica ASCII (American Standard Code for Information Interchange):
 - Caratteri speciali, punteggiatura, a-z, A-Z, 0-9
 - Utilizza 7 bit (128 caratteri)
 - I codici ASCII estesi usano 8 bit (256 caratteri)
- ◆ Codifica EBCDIC (Extended Binary-Coded Decimal Interchange Code)
 - Utilizza 8 bit (256 caratteri)
- ◆ Codifica UNICODE
 - Utilizza 16 bit (65536 caratteri)
 - I primi 128 caratteri di UNICODE sono gli stessi di ASCII
 - I successivi corrispondono ad altri alfabeti (greco, cirillico, ebraico, ...)
 - Non riesce a coprire i simboli (oltre 200.000) di tutte le lingue!

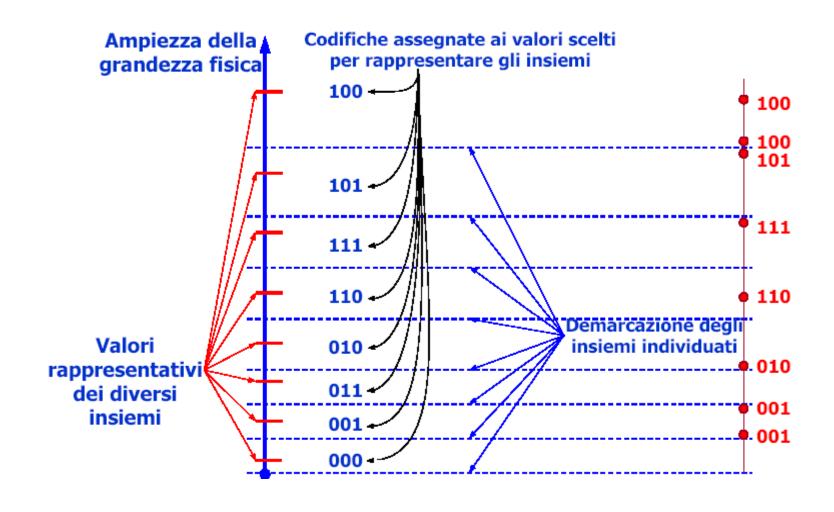
ASCII SU 7 BIT


	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
010	sp	!	"	#	\$	%	&	1	()	*	+	,	-		/
011	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
100	@	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	N	0
101	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Z	[\]	^	_
110	`	а	b	С	d	е	f	g	h	Ι	j	k		m	n	0
111	р	q	r	S	t	u	٧	W	Χ	Υ	Z	{		}	~	canc


"Ciao" = 1000011 1101001 1100001 1101111

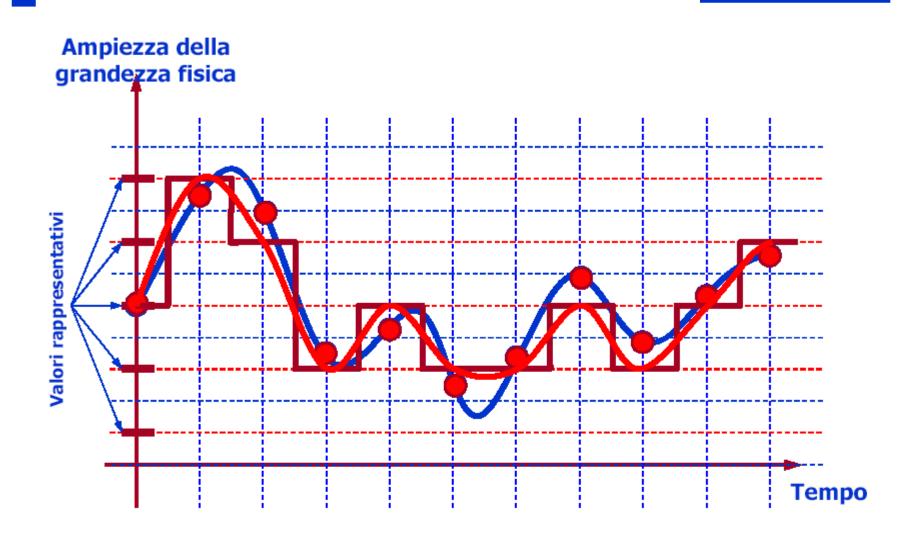
"24" = 0110001 0110011

"3 kg" = 0110011 0100000 1101011 1100111


CODIFICA ANALOGICA E CODIFICA DIGITALE

- Codifica analogica: le configurazioni possono variare in maniera continua su un insieme prefissato; esiste una relazione di analogia tra l'insieme delle configurazioni e l'insieme delle informazioni
- Codifica digitale: le entità di informazione vengono codificate mediante configurazioni convenzionali

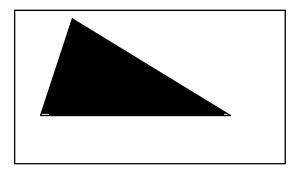
QUANTIZZAZIONE


CAMPIONAMENTO

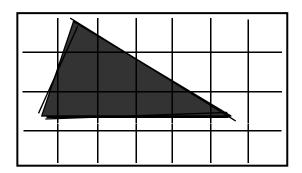
La grandezza varia nel tempo e non può essere rappresentata da un solo valore.

- I valori di riferimento debbono essere rilevati in diversi istanti di tempo (frequenza di campionamento).
- La quantizzazione deve poi essere ripetuta per ogni valore campionato.

DIGITALIZZAZIONE


VANTAGGI DELLA CODIFICA DIGITALE

- Rumore: effetto dell'ambiente sul supporto.
- Quanto un supporto è "immune" al rumore?
 - Codifica analogica: ogni configurazione è lecita dal punto di vista informazionale e quindi risulta impossibile distinguere il rumore dal segnale.
 - Codifica digitale: un valore binario è associato a un insieme di configurazioni valide quindi si può
 - riconoscere il rumore che porta in configurazioni non lecite
 - trascurare il rumore che non fa uscire il segnale dall'insieme associato alla stessa configurazione



CODIFICA DI IMMAGINI

◆ Consideriamo un'immagine in bianco e nero, senza ombreggiature o livelli di chiaroscuro

◆ Suddividiamo l'immagine mediante una griglia formata da righe orizzontali e verticali a distanza costante

CODIFICA DI IMMAGINI

- ◆ Ogni quadratino derivante da tale suddivisione prende il nome di pixel (picture element) e può essere codificato in binario secondo la seguente convenzione:
 - il simbolo "0" viene utilizzato per la codifica di un pixel corrispondente ad un quadratino bianco (in cui il bianco è predominante)
 - il simbolo "1" viene utilizzato per la codifica di un pixel corrispondente ad un quadratino nero (in cui il nero è predominante)

CODIFICA DI IMMAGINI

- ◆Poiché una sequenza di bit è lineare, si deve definire una convenzione per **ordinare** i pixel della griglia
- ◆ipotesi: assumiamo che i pixel siano ordinati dal basso verso l'alto e da sinistra verso destra

0	1	0	0,25	0	0	0
0	1	1	0	0		0
0,	1,	1	1	1	0	0,14
$\overline{0}_{1}$	0,	0,	0_{4}	0,	0_6	0,

La rappresentazione della figura è data dalla stringa binaria 0000000 0111100 0110000 0100000

CODIFICA DI IMMAGINI A COLORI

- Il numero di byte richiesti dipende dalla risoluzione e dal numero di colori che ogni pixel può assumere
- ◆ Es: per distinguere 256 colori sono necessari 8 bit per la codifica di ciascun pixel
 - la codifica di un'immagine formata da 640×480 pixel richiederà 2457600 bit (307200 byte)
- ◆ I monitor tipici utilizzano
 - risoluzione: 640×480, 1024×768, 1280×1024
 - numero di colori per pixel: da 256 fino a 16 milioni

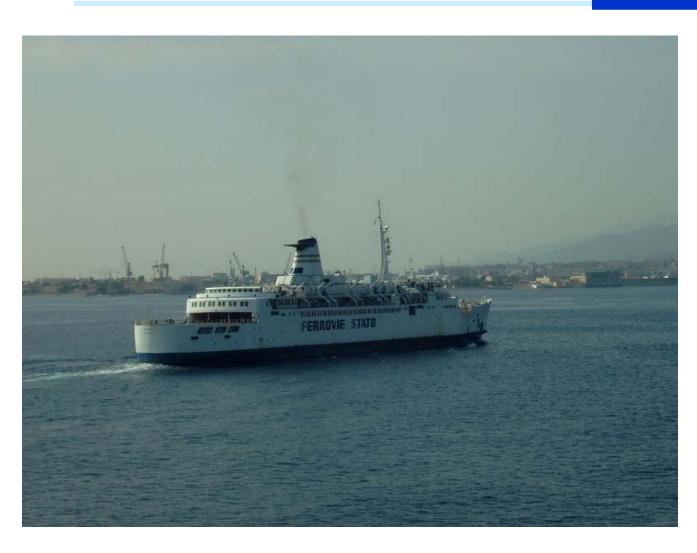
COMPRESSIONE DEI DATI

- **♦** Lossless
 - Senza perdita di informazione
 - Programmi, documenti
- **♦** Lossy
 - Con perdita di informazione
 - Rapporto di compressione variabile dall'utente
 - Immagini: GIF, JPEG (elimina lievi cambiamenti di colore)

COMPRESSIONE DEI DATI

♦ Esempio:

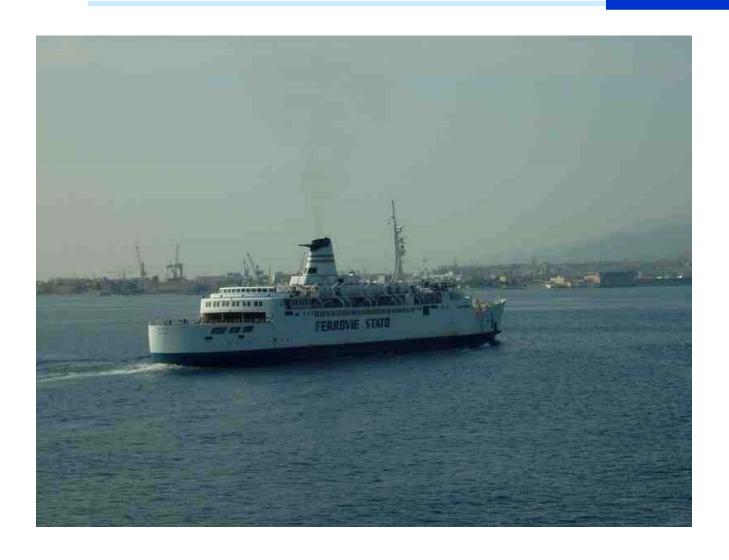
- {A, C, G, T}
- A=00, C=01, G=10, T=11
- ATTACCGAAAACTTCTCTCGGGTG... → 1 milione caratteri = 2 milioni di bit
- 00111100010110...
- fr(A)=50%, fr(C)=25%, fr(G)=12.5%, fr(T)=12.5%
- A=0, C=10, G=110, T=111
- 0111111101010110...
- $1 \times 50\% + 2 \times 25\% + 2 \times 3 \times 12.5\% \times 10^6 = 1.75$ milioni di bit \rightarrow risparmio di 250000 bit!
- La nuova successione binaria deve essere decodificabile

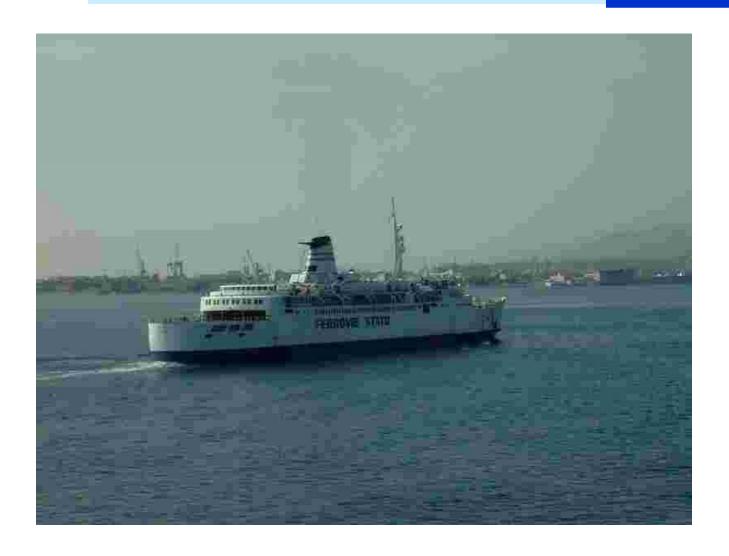

JPEG: Fattore qualità 90/100 (253KB)

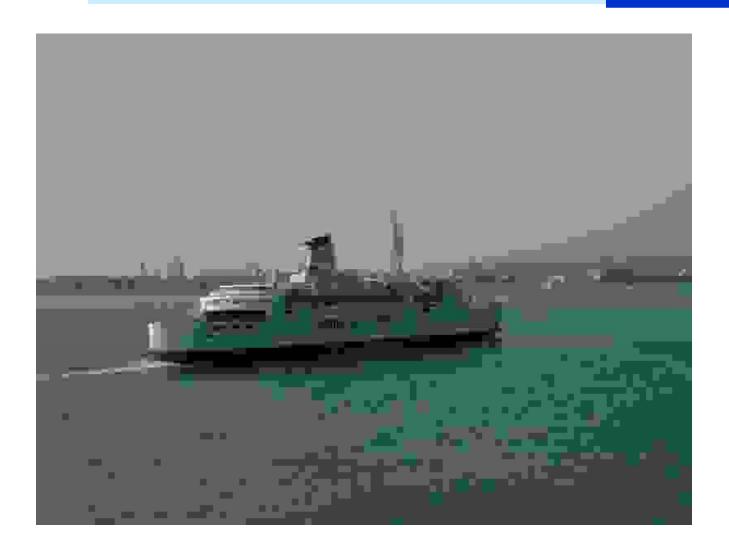
800x600

16,8mln colori 24 bit

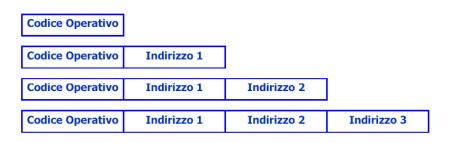
Bi tmap: 1440000 byte


JPEG: 258971 byte


JPEG: Fattore qualità 50/100 (30KB)


JPEG: Fattore qualità 25/100 (20KB)

JPEG: Fattore qualità 10/100 (12KB)



JPEG: Fattore qualità 1/100 (9KB)

CODIFICA DELLE ISTRUZIONI

Istruzioni aritmetico-logiche					
Codice	Istruzione				
01100000	ADD				
01100100	SUB				
01111110	AND				

- Linguaggio macchina
 - A ogni istruzione è assegnato un codice univoco, detto codice operativo
 - E' necessario specificare dove leggere gli operandi (dati) dell'istruzione e dove scrivere il risultato
 - Il numero di dati che ogni istruzione manipola è variabile in funzione dell'istruzione stessa

FINE