Dependencies Revisited for Improving Data Quality

Wenfei Fan

University of Edinburgh &

Bell Laboratories
Real-world data is often **dirty**

Ms. Stone, according to our database records you are supposed to be dead
Real-world data is often **dirty**

Ms. Stone, according to our database records you are supposed to be dead

- US: Pentagon asked **275** dead/wounded officers to re-enlist
- UK: there are **81 million** national insurance numbers but only **60 million** people eligible
- Australia: **500,000** dead people retain active medicare cards
- In a database of **500,000** customers, **120,000** records become invalid within a year – death, divorce, marriage, move
- typical data error rate in industry: **1% – 5%**, up to **30%**
- . . .

Errors, conflicts and inconsistencies
Dirty data is costly

- Poor data costs US companies $600 billion annually;
- Erroneously priced data in retail databases costs US customers $2.5 billion each year;
- World-wide losses from payment card fraud reached $4.84 billion in 2006;
- 30% – 80% of the development time for data cleaning in a data integration project; and
- don’t forget “dirty data” about WMD in Iraq

The market for data quality tools is growing at 17% annually
$$\gg$$ 7% average of IT segments
Research activities

Statistics, management, and computer science

- **Error correction** (data imputation): to localize tuples that violate a given set of semantic rules, and fix erroneous values in the tuples that are identified as violations of the rules.

- **Object identification**: to identify tuples from one or more relations that refer to the same real-world object.

- **Profiling**: to infer and discover meta-data (constraints or semantic rules) from sample data.

- **Data integration**: to resolve conflicts in the sources via object identification; quality-driven query processing by explicitly taking into account the quality of data from various sources.

Approaches: probabilistic, empirical, rule-based, and logic-based, ...
A principled approach based on data dependencies

A promising approach, logic-based

- Capturing a fundamental part of the semantics of data: inconsistencies emerge as violations of dependencies
- Reasoning about the semantics of the data: inference systems, analysis algorithms, ...
- Semantic profiling: discovery of dependencies for error correction and object identification

...
A principled approach based on data dependencies

A promising approach, logic-based

- Capturing a fundamental part of the semantics of data: inconsistencies emerge as violations of dependencies
- Reasoning about the semantics of the data: inference systems, analysis algorithms, ...
- Semantic profiling: discovery of dependencies for error correction and object identification

Dependencies considered for data cleaning: often traditional
- functional dependencies,
- inclusion dependencies

... designed for improving the quality of schema
A principled approach based on data dependencies

A promising approach, logic-based

- Capturing a fundamental part of the semantics of data: inconsistencies emerge as violations of dependencies
- Reasoning about the semantics of the data: inference systems, analysis algorithms, ...
- Semantic profiling: discovery of dependencies for error correction and object identification

Dependencies considered for data cleaning: often traditional

- functional dependencies,
- inclusion dependencies

... designed for improving the quality of schema

Revising traditional dependencies, for improving data quality
Conditional dependencies for capturing data inconsistencies
 - Conditional functional dependencies (CFDs)
 - Conditional inclusion dependencies (CINDs)
 - Other extensions

Matching dependencies for object identification

Static analyses: New challenges
 - Reasoning about conditional dependencies:
 - Inferring matching rules

Improving data quality with dependencies
 - Data repairing (Arenas, Bertossi, Chomicki)
 - Consistent querying answering (Arenas, Bertossi, Chomicki)
 - Condensed representations of all repairs

Open research issues

Joint work with Philip Bohannon, Loreto Bravo, Gao Cong, Floris Geerts, Xibei Jia, Anastasios Kementsietsidis, Shuai Ma
Surveys on data quality

- ...

Sources of the statistics

Outline

- Conditional dependencies for capturing data inconsistencies
 - Conditional functional dependencies (CFDs)
 - Conditional inclusion dependencies (CINDs)
 - Other extensions

- Matching dependencies for object identification

- Static analyses: New challenges
 - Reasoning about conditional dependencies:
 - Inferring matching rules

- Improving data quality with dependencies
 - Data repairing (Arenas, Bertossi, Chomicki)
 - Consistent querying answering (Arenas, Bertossi, Chomicki)
 - Condensed representations of all repairs

- Open research issues
Example: customer relation

One of the **central technical problems** is how to tell whether the data is dirty or clean

- **Schema:** country code (CC), area code (AC), phone (phn), ...

 $$\text{Cust}(\text{CC}: \text{int}, \text{AC}: \text{int}, \text{phn}: \text{int}, \text{name}: \text{string}, \text{street}: \text{string}, \text{city}: \text{string}, \text{zip}: \text{string})$$

- **Instance:**

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>AC</th>
<th>phn</th>
<th>name</th>
<th>street</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>44</td>
<td>131</td>
<td>1234567</td>
<td>Mike</td>
<td>Mayfield</td>
<td>NYC</td>
<td>EH4 8LE</td>
</tr>
<tr>
<td>t₂</td>
<td>44</td>
<td>131</td>
<td>3456789</td>
<td>Rick</td>
<td>Crichton</td>
<td>NYC</td>
<td>EH4 8LE</td>
</tr>
<tr>
<td>t₃</td>
<td>01</td>
<td>908</td>
<td>3456789</td>
<td>Joe</td>
<td>Mtn Ave</td>
<td>NYC</td>
<td>07974</td>
</tr>
</tbody>
</table>
Example: customer relation

One of the central technical problems is how to tell whether the data is dirty or clean

- **Schema**: country code (*CC*), area code (*AC*), phone (*phn*), ...

 \[
 \text{Cust} (\text{CC}: \text{int}, \text{AC}: \text{int}, \text{phn}: \text{int}, \text{name}: \text{string}, \text{street}: \text{string}, \text{city}: \text{string}, \text{zip}: \text{string})
 \]

- **Instance**:

<table>
<thead>
<tr>
<th>CC</th>
<th>AC</th>
<th>phn</th>
<th>name</th>
<th>street</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>131</td>
<td>1234567</td>
<td>Mike</td>
<td>Mayfield</td>
<td>NYC</td>
<td>EH4 8LE</td>
</tr>
<tr>
<td>44</td>
<td>131</td>
<td>3456789</td>
<td>Rick</td>
<td>Crichton</td>
<td>NYC</td>
<td>EH4 8LE</td>
</tr>
<tr>
<td>01</td>
<td>908</td>
<td>3456789</td>
<td>Joe</td>
<td>Mtn Ave</td>
<td>NYC</td>
<td>07974</td>
</tr>
</tbody>
</table>

- **Functional dependencies (FDs)**:

 \[
 f_1: [\text{CC}, \text{AC}, \text{phn}] \rightarrow [\text{street}, \text{city}, \text{zip}],
 \]

 \[
 f_2: [\text{CC}, \text{AC}] \rightarrow [\text{city}].
 \]

The database satisfies the FDs. Is the data really clean?
Capturing inconsistencies in the data

- In the **UK**, the zip code uniquely determines the street.
 \[\text{cfd}_1: (\text{CC} = 44, \text{zip}) \rightarrow \text{[street]}] \]
- This constraint specifies a **semantic** property of the data.
- It does **not** hold for other countries, e.g., USA
- It can’t be expressed as standard FDs.
Capturing inconsistencies in the data

- In the UK, the zip code uniquely determines the street.

 \[\text{cfd}_1: ([\text{CC} = 44, \text{zip}] \rightarrow [\text{street}]) \]

- This constraint specifies a semantic property of the data.

- It does not hold for other countries, e.g., USA

- It can’t be expressed as standard FDs.

- The example database does not satisfy this constraint

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>AC</th>
<th>phn</th>
<th>name</th>
<th>street</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1):</td>
<td>44</td>
<td>131</td>
<td>1234567</td>
<td>Mike</td>
<td>Mayfield</td>
<td>NYC</td>
<td>EH4 8LE</td>
</tr>
<tr>
<td>(t_2):</td>
<td>44</td>
<td>131</td>
<td>3456789</td>
<td>Rick</td>
<td>Crichton</td>
<td>NYC</td>
<td>EH4 8LE</td>
</tr>
<tr>
<td>(t_3):</td>
<td>01</td>
<td>908</td>
<td>3456789</td>
<td>Joe</td>
<td>Mtn Ave</td>
<td>NYC</td>
<td>07974</td>
</tr>
</tbody>
</table>

The data is not clean after all
More example constraints

- In the UK, if the area code is 131, then the city must be Edinburgh (EDI).
- In the USA, if the area code is 908, then the city must be Murray Hill (MH).
- Refining the FD f_1: $[CC, AC, phn] \rightarrow [street, city, zip]$ by adding conditions (bindings of semantically related constants):

 cfd_2: $[CC = 44, AC = 131, phn] \rightarrow [street, city = 'EDI', zip])$

 cfd_3: $[CC = 01, AC = 908, phn] \rightarrow [street, city = 'MH', zip])$
More example constraints

- In the UK, if the area code is 131, then the city must be Edinburgh (EDI)
- In the USA, if the area code is 908, then the city must be Murray Hill (MH)
- Refining the FD $f_1: [CC, AC, phn] \rightarrow [street, city, zip]$ by adding conditions (bindings of semantically related constants)

 \[
 \text{cfd}_2: ([CC = 44, AC = 131, phn] \rightarrow [\text{street}, \text{city} = '\text{EDI}', \text{zip}])
 \]
 \[
 \text{cfd}_3: ([CC = 01, AC = 908, phn] \rightarrow [\text{street}, \text{city} = '\text{MH}', \text{zip}])
 \]

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>AC</th>
<th>phn</th>
<th>name</th>
<th>street</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>44</td>
<td>131</td>
<td>1234567</td>
<td>Mike</td>
<td>Mayfield</td>
<td>NYC</td>
<td>EH4 8LE</td>
</tr>
<tr>
<td>t_2</td>
<td>44</td>
<td>131</td>
<td>3456789</td>
<td>Rick</td>
<td>Crichton</td>
<td>NYC</td>
<td>EH4 8LE</td>
</tr>
<tr>
<td>t_3</td>
<td>01</td>
<td>908</td>
<td>3456789</td>
<td>Joe</td>
<td>Mtn Ave</td>
<td>NYC</td>
<td>07974</td>
</tr>
</tbody>
</table>

None of the tuples in the example database is clean
The need for new dependencies

cfd_1: ([CC = 44, zip] → [street])
cfd_2: ([CC = 44, AC = 131, phn] → [street, city = ‘EDI’, zip])
cfd_3: ([CC = 01, AC = 908, phn] → [street, city = ‘MH’, zip])

- They capture inconsistencies that traditional FDs cannot detect – FDs were designed for schema design after all
- Data integration in real-life: source dependencies
 - hold on a subset of sources
 - but only hold conditionally on the integrated data
- They are NOT expressible as traditional FDs
 - do not hold on the entire relation
 - contain constant data values, besides logical variables

To determine whether the data is dirty or clean
Conditional Functional Dependencies (CFDs)

An extension of traditional functional dependencies:

- A CFD is defined to be a pair \(\varphi = R(X \rightarrow Y, T_p) \), where
 - \(X \rightarrow Y \) is a standard FD, embedded in \(\varphi \);
 - \(T_p \) is the pattern tableau consisting of tuples \(t_p \) over \(X \cup Y \);
 - In a pattern tuple \(t_p \), each \(t_p[A] \) is either a constant from \(\text{dom}(A) \) or a wildcard ‘\(_\)' (unnamed variable) that draws values from \(\text{dom}(A) \).

Example: \(\text{cfd}_1: ([CC = 44, zip] \rightarrow [street]) \)

- \(\text{Cust}([CC, zip] \rightarrow [street], T_p) \)
- pattern tableau \(T_p: \)

<table>
<thead>
<tr>
<th>CC</th>
<th>zip</th>
<th>street</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
Conditional Functional Dependencies (CFDs)

- A CFD is defined to be a pair $\varphi = R(X \rightarrow Y, T_p)$, where
 - $X \rightarrow Y$ is a standard FD, embedded in φ;
 - T_p is the pattern tableau consisting of tuples t_p over $X \cup Y$;
 - In a pattern tuple t_p, each $t_p[A]$ is either a constant from $\text{dom}(A)$ or a wildcard ‘-’ (unnamed variable) that draws values from $\text{dom}(A)$.

- Traditional FDs as a special case: expressing the FD f_1 as
 - $\text{Cust}([CC, AC, phn] \rightarrow [street, city, zip], T_p)$
 - pattern tableau T_p:

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>AC</th>
<th>phn</th>
<th>street</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>pattern</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

CFDs subsume traditional FDs.
A CFD is defined to be a pair $\varphi = R(X \rightarrow Y, T_p)$, where
- $X \rightarrow Y$ is a standard FD, embedded in φ;
- T_p is the pattern tableau consisting of tuples t_p over $X \cup Y$;
- In a pattern tuple t_p, each $t_p[A]$ is either a constant from $\text{dom}(A)$ or a wildcard ‘_’ (unnamed variable) that draws values from $\text{dom}(A)$.

A single CFD representing cfd_2, cfd_3 and FD f_1:
- $\text{Cust}([CC, AC, phn] \rightarrow [street, city, zip], T_p)$
- pattern tableau T_p:

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>AC</th>
<th>phn</th>
<th>street</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44</td>
<td>131</td>
<td>_</td>
<td>_</td>
<td>EDI</td>
<td>_</td>
</tr>
<tr>
<td>2</td>
<td>01</td>
<td>908</td>
<td>_</td>
<td>_</td>
<td>MH</td>
<td>_</td>
</tr>
<tr>
<td>3</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
</tbody>
</table>

Each pattern tuple t_p is a constraint.
Semantics of CFDs

- **Operator \(\simeq \):**
 - a matches b \((a \simeq b) \)
 - either a or b is \(__ \)
 - both a and b are constants and \(a = b \).
 - tuple \(t_1 \) matches tuple \(t_2 \) \((t_1 \simeq t_2) \): defined component-wise
 - \((a, b) \simeq (a, _) \) but \((a, b) \not\simeq (a, c) \).
Semantics of CFDs

- **Operator \(\bowtie \):**
 - *a matches b* \((a \bowtie b) \)
 - either \(a \) or \(b \) is \(_ \)
 - both \(a \) and \(b \) are constants and \(a = b \).
 - tuple \(t_1 \) matches tuple \(t_2 \) \((t_1 \bowtie t_2) \): defined component-wise
 - \((a, b) \bowtie (a, _)\) but \((a, b) \not\bowtie (a, c)\).

- A database \(D \) satisfies a CFD \(\varphi = R(X \rightarrow Y, T_p) \) iff for each pair of tuples \(u, v \in D \) and for each pattern tuple \(t_p \in T_p \),
 - if \(u[X] = v[X] \bowtie t_p[X] \), then \(u[Y] = v[Y] \bowtie t_p[Y] \)
Semantics of CFDs

- Operator \(\simeq \):
 - \(a \) matches \(b \) (\(a \simeq b \))
 - either \(a \) or \(b \) is _
 - both \(a \) and \(b \) are constants and \(a = b \).
 - tuple \(t_1 \) matches tuple \(t_2 \) (\(t_1 \simeq t_2 \)): defined component-wise
 - \((a, b) \simeq (a, _)\) but \((a, b) \not\approx (a, c)\).

- A database \(D \) satisfies a CFD \(\varphi = R(X \rightarrow Y, T_p) \) iff for each pair of tuples \(u, v \in D \) and for each pattern tuple \(t_p \in T_p \),

 if \(u[X] = v[X] \simeq t_p[X] \), then \(u[Y] = v[Y] \simeq t_p[Y] \)

- Pattern tuples:
 - \(t_p[X] \): identifying a subset \(\{ u \mid u \in D, u[X] \simeq t_p[X] \} \);
 - \(u[Y] = v[Y] \simeq t_p[Y] \): enforcing the FD \(X \rightarrow Y \) and the pattern \(t_p[Y] \) to the subset.

Conditional: \(t_p \) applies to the subset rather than to the entire \(D \)
Violation of CFDs

- Cust([CC, AC, phn] → [street, city, zip], Tp)

<table>
<thead>
<tr>
<th>Tp:</th>
<th>CC</th>
<th>AC</th>
<th>phn</th>
<th>street</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>44</td>
<td>131</td>
<td></td>
<td></td>
<td>EDI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>908</td>
<td></td>
<td></td>
<td>MH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Tuple t3 violates the CFD:
 - t3[CC, AC, phn] = t3[CC, AC, phn] ≃ t p[CC, AC, phn]
 - t3[city] ≠ t p[city]

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>AC</th>
<th>phn</th>
<th>name</th>
<th>street</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1:</td>
<td>44</td>
<td>131</td>
<td>1234567</td>
<td>Mike</td>
<td>Mayfield</td>
<td>NYC</td>
<td>EH4 8LE</td>
</tr>
<tr>
<td>t2:</td>
<td>44</td>
<td>131</td>
<td>3456789</td>
<td>Rick</td>
<td>Crichton</td>
<td>NYC</td>
<td>EH4 8LE</td>
</tr>
<tr>
<td>t3:</td>
<td>01</td>
<td>908</td>
<td>3456789</td>
<td>Joe</td>
<td>Mtn Ave</td>
<td>NYC</td>
<td>07974</td>
</tr>
</tbody>
</table>
Violation of CFDs

- Cust([CC, AC, phn] → [street, city, zip], Tp)

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>AC</th>
<th>phn</th>
<th>street</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tp:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>131</td>
<td>-</td>
<td>-</td>
<td>EDI</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>908</td>
<td>_</td>
<td>_</td>
<td>MH</td>
<td>_</td>
</tr>
</tbody>
</table>

- Tuple t3 violates the CFD:
 - t3[CC, AC, phn] = t3[CC, AC, phn] ≍ t_p[CC, AC, phn]
 - t3[city] ≠ t_p[city]

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>AC</th>
<th>phn</th>
<th>name</th>
<th>street</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1:</td>
<td>44</td>
<td>131</td>
<td>1234567</td>
<td>Mike</td>
<td>Mayfield</td>
<td>NYC</td>
<td>EH4 8LE</td>
</tr>
<tr>
<td>t2:</td>
<td>44</td>
<td>131</td>
<td>3456789</td>
<td>Rick</td>
<td>Crichton</td>
<td>NYC</td>
<td>EH4 8LE</td>
</tr>
<tr>
<td>t3:</td>
<td>01</td>
<td>908</td>
<td>3456789</td>
<td>Joe</td>
<td>Mtn Ave</td>
<td>NYC</td>
<td>07974</td>
</tr>
</tbody>
</table>

A single tuple may violate a CFD
The need for extending inclusion dependencies

Example schema:

Source: order(title: string, type: string, price: real)

Target: book(title: string, price: real, format: string)

CD(album: string, price: real, genre: string)

Inclusion dependencies (INDs) from the source to the target?
The need for extending inclusion dependencies

Example schema:

Source: \(\text{order}(\text{title}: \text{string}, \text{type}: \text{string}, \text{price}: \text{real}) \)

Target: \(\text{book}(\text{title}: \text{string}, \text{price}: \text{real}, \text{format}: \text{string}) \)

\(\text{CD}(\text{album}: \text{string}, \text{price}: \text{real}, \text{genre}: \text{string}) \)

Inclusion dependencies (INDs) from the source to the target?

\[
\text{order}(\text{title}, \text{price}) \subseteq \text{book}(\text{title}, \text{price}), \\
\text{order}(\text{title}, \text{price}) \subseteq \text{CD}(\text{album}, \text{price}).
\]

These traditional INDs do not make sense

<table>
<thead>
<tr>
<th>order</th>
<th>title</th>
<th>type</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_4):</td>
<td>Snow White</td>
<td>CD</td>
<td>7.99</td>
</tr>
<tr>
<td>(t_5):</td>
<td>Harry Potter</td>
<td>book</td>
<td>17.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>book</th>
<th>title</th>
<th>price</th>
<th>format</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_6):</td>
<td>Harry Potter</td>
<td>17.99</td>
<td>hard-cover</td>
</tr>
<tr>
<td>(t_7):</td>
<td>Snow White</td>
<td>7.99</td>
<td>paper-cover</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CD</th>
<th>album</th>
<th>price</th>
<th>genre</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_8):</td>
<td>J. Denver</td>
<td>7.94</td>
<td>country</td>
</tr>
<tr>
<td>(t_9):</td>
<td>Snow White</td>
<td>7.99</td>
<td>a-book</td>
</tr>
</tbody>
</table>
Extending inclusion dependencies for schema matching

◮ Schema:

Source: `order(title: string, type: string, price: real)`

Target: `book(title: string, price: real, format: string)`

`CD(album: string, price: real, genre: string)`

◮ There are indeed inclusion dependencies, under conditions:

\[
cind_1: (\text{order}(\text{title, price}; \text{type} = \text{'book'}) \subseteq \text{book}(\text{title, price}))
\]

\[
cind_2: (\text{order}(\text{title, price}; \text{type} = \text{'CD'}) \subseteq \text{CD}(\text{album, price}))
\]

◮ `order(title, price) \subseteq \text{book}(title, price)` holds only if `type = \text{book}

◮ `order(title, price) \subseteq \text{CD}(\text{album, price})` holds only if `type = \text{CD}

These dependencies only apply to subsets of the order relation that satisfy certain patterns.
Extending inclusion dependencies for data cleaning

- A constraint from CD to book: it holds only if the genre of a CD is audio book and if so, then the format of the matching book must be audio

\[\text{cind}_3: \ (\text{CD}(\text{album}, \text{price}; \ \text{genre} = \text{‘a-book’}) \subseteq \text{book}(\text{title}, \text{price}; \ \text{format} = \text{‘audio’})) \]

- The example database does not satisfy \(\text{cind}_3 \)

<table>
<thead>
<tr>
<th>CD</th>
<th>album</th>
<th>price</th>
<th>genre</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_8):</td>
<td>J. Denver</td>
<td>7.94</td>
<td>country</td>
</tr>
<tr>
<td>(t_9):</td>
<td>Snow White</td>
<td>7.99</td>
<td>a-book</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>book</th>
<th>title</th>
<th>price</th>
<th>format</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_6):</td>
<td>Harry Potter</td>
<td>17.99</td>
<td>hard-cover</td>
</tr>
<tr>
<td>(t_7):</td>
<td>Snow White</td>
<td>7.99</td>
<td>paper-cover</td>
</tr>
</tbody>
</table>
Extending inclusion dependencies for data cleaning

- A constraint from CD to book: it holds only if the genre of a CD is audio book and if so, then the format of the matching book must be audio

\[
cind_3: (\text{CD(album, price; genre = 'a-book')} \subseteq \text{book(title, price; format = 'audio')})
\]

- The example database does not satisfy \(cind_3\)

<table>
<thead>
<tr>
<th>CD</th>
<th>album</th>
<th>price</th>
<th>genre</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_8):</td>
<td>J. Denver</td>
<td>7.94</td>
<td>country</td>
</tr>
<tr>
<td>(t_9):</td>
<td>Snow White</td>
<td>7.99</td>
<td>a-book</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>book</th>
<th>title</th>
<th>price</th>
<th>format</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_6):</td>
<td>Harry Potter</td>
<td>17.99</td>
<td>hard-cover</td>
</tr>
<tr>
<td>(t_7):</td>
<td>Snow White</td>
<td>7.99</td>
<td>paper-cover</td>
</tr>
</tbody>
</table>

These dependencies specify patterns of semantically related data values across different relations
An extension of inclusion dependencies:

- A CIND is a pair \((R_1[X] \subseteq R_2[Y], \ T_p[X_p \parallel Y_p])\), where
 - \(R_1[X] \subseteq R_2[Y]\) is a standard IND from \(R_1\) to \(R_2\);
 - \(T_p\) is a pattern tableau over \(X_p\) of \(R_1\) and \(Y_p\) of \(R_2\) (distinct from \(X\) and \(Y\)), consisting of pattern tuples of constants only.
Conditional Inclusion Dependencies (CINDs)

- A CIND is a pair $(R_1[X] \subseteq R_2[Y], \ T_p[X_p \parallel Y_p])$, where
 - $R_1[X] \subseteq R_2[Y]$ is a standard IND from R_1 to R_2;
 - T_p is a pattern tableau over X_p of R_1 and Y_p of R_2 (distinct from X and Y), consisting of pattern tuples of constants only.

- Examples: cind_1, cind_2, cind_3:
 - cind_1: $(\text{order}(\text{title, price}; \text{type} = \text{'book'}) \subseteq \text{book}(\text{title, price}))$
 - cind_2: $(\text{order}(\text{title, price}; \text{type} = \text{'CD'}) \subseteq \text{CD}(\text{album, price}))$
 - cind_3: $(\text{CD}(\text{album, price}; \text{genre} = \text{'a-book'}) \subseteq \text{book}(\text{title, price}; \text{format} = \text{'audio'}))$

- CINDs:
 - φ_4: $(\text{order}(\text{title, price}) \subseteq \text{book}(\text{title, price}), \ T_4[\text{type}])$
 - φ_5: $(\text{order}(\text{title, price}) \subseteq \text{CD}(\text{album, price}), \ T_5[\text{type}])$
 - φ_6: $(\text{CD}(\text{album, price}) \subseteq \text{book}(\text{title, price}), \ T_6[\text{genre} \parallel \text{format}])$

$$
\begin{array}{c|c}
\text{type} & \text{book} \\
\hline
\text{type} & \text{CD} \\
\hline
\text{genre} & \text{format} \\
\hline
\text{a-book} & \text{audio}
\end{array}
$$
A CIND is a pair \((R_1[X] \subseteq R_2[Y], \ T_p[X_p \parallel Y_p])\), where
- \(R_1[X] \subseteq R_2[Y]\) is a standard IND from \(R_1\) to \(R_2\);
- \(T_p\) is a pattern tableau over \(X_p\) of \(R_1\) and \(Y_p\) of \(R_2\) (distinct from \(X\) and \(Y\)), consisting of pattern tuples of constants only.

Standard INDs are a special case of CINDs:
- IND: \(R_1[X] \subseteq R_2[Y]\)
- CIND: \((R_1[X] \subseteq R_2[Y], \ T_p[\emptyset])\)
Semantics of CINDs

- \(D = (D_1, D_2), \) where \(D_i \) is an instance of \(R_i, \ i = 1, 2. \)
- \(D \) satisfies \((R_1[X] \subseteq R_2[Y], T_p[X_p \parallel Y_p])\) iff
 for any tuple \(s \) in \(D_1 \) and any pattern tuple \(t_p \) in \(T_p, \)
 if \(s[X_p] = t_p[X_p] \) then there exists a tuple \(t \) in \(D_2 \) such that
 - \(s[X] = t[Y] \) and
 - \(t[Y_p] = t_p[Y_p]. \)
Semantics of CINDs

$D = (D_1, D_2)$, where D_i is an instance of R_i, $i = 1, 2$.

D satisfies $(R_1[X] \subseteq R_2[Y], T_p[X_p \parallel Y_p])$ iff for any tuple s in D_1 and any pattern tuple t_p in T_p if $s[X_p] = t_p[X_p]$ then there exists a tuple t in D_2 such that

- $s[X] = t[Y]$ and

Pattern tuples:

- $t_p[X_p]$ identifies a subset $\{s \mid s \in D_1, s[X_p] = t_p[X_p]\}$;
- $s[X] = t[Y]$ and $t[Y_p] = t_p[Y_p]$: enforcing the standard IND $R_1[X] \subseteq R_2[Y]$ on the subset, and moreover, enforcing the $t_p[Y_p]$ pattern to the matching R_2 tuples.

Each pattern tuple t_p is a constraint
Other extensions: Denial constraints

- Well studied for improving data quality
- Universally quantified FO sentences of the form:

\[\forall \bar{x}_1 \ldots \bar{x}_m \neg (R_1(\bar{x}_1) \land \ldots \land R_m(\bar{x}_m) \land \varphi(\bar{x}_1, \ldots, \bar{x}_m)), \]

- \(R_i \) is a relation atom for \(i \in [1, m] \);
- \(\varphi \) is a conjunction of built-in predicates such as \(=, \neq, <, >, \leq, \geq \);
- may carry constants, numerical values and aggregate functions.

- Static analyses: satisfiability, implication and finite axiomatizability?

Surveys:

Other extensions of functional dependencies

- Studied for constraint databases and constraint logic programs
- **Constraint Generating Dependencies:**
 \[\forall \bar{x}(R_1(\bar{x}) \land \ldots \land R_k(\bar{x}) \land \xi(\bar{x}) \rightarrow \xi'(\bar{x})) \]
 - \(\xi, \xi'\) are arbitrary constraints, which may carry constants;
 - subsuming CFDs

Other extensions of functional dependencies

- Studied for constraint databases and constraint logic programs

Constraint Generating Dependencies:

\[\forall \vec{x}(R_1(\vec{x}) \land \ldots \land R_k(\vec{x}) \land \xi(\vec{x}) \rightarrow \xi'(\vec{x})) \]

- \(\xi, \xi' \) are arbitrary constraints, which may carry constants;
- subsuming CFDs

Constrained Tuple Generating Dependencies:

\[\forall \vec{x}(R_1(\vec{x}) \land \ldots \land R_k(\vec{x}) \land \xi \rightarrow \exists \vec{y}(R_1'(\vec{x}, \vec{y}) \land \ldots \land R_s'(\vec{x}, \vec{y}) \land \xi' (\vec{x}, \vec{y}))) \]

subsuming both CFDs and CINDs;

Other extensions of functional dependencies

- Studied for constraint databases and constraint logic programs

- **Constraint Generating Dependencies:**

\[
\forall \bar{x}(R_1(\bar{x}) \land \ldots \land R_k(\bar{x}) \land \xi(\bar{x}) \rightarrow \xi'(\bar{x}))
\]

 - \(\xi, \xi'\) are arbitrary constraints, which may carry constants;
 - subsuming CFDs

- **Constrained Tuple Generating Dependencies:**

\[
\forall \bar{x}(R_1(\bar{x}) \land \ldots \land R_k(\bar{x}) \land \xi \rightarrow \exists \bar{y}(R'_1(\bar{x}, \bar{y}) \land \ldots \land R'_s(\bar{x}, \bar{y}) \land \xi'(\bar{x}, \bar{y})))
\]

 subsuming both CFDs and CINDs;

- Higher complexity for static analyses: satisfiability, implication and finite axiomatizability
Survey on traditional data dependencies:

Extensions of traditional dependencies:

CFDs

CINDs

Extending dependencies with conditions for capturing data inconsistencies
 - Conditional functional dependencies (CFDs)
 - Conditional inclusion dependencies (CINDs)
 - Other extensions
Matching dependencies for object identification
 - Object identification and matching rules
 - Matching dependencies
Static analyses: New challenges
Improving data quality with dependencies
Open research issues
Object identification

Data deduplication, merge/purge, record linkage (matching): to identify tuples from one or more relations that refer to the same real-world object.
Object identification

Data deduplication, merge/purge, record linkage (matching): to identify tuples from one or more relations that refer to the same real-world object.

Example: credit-card fraud detection

➤ Schema: credit cards and billing transactions
 card(C#, type, SSN, FN, LN, addr, tel, email),
 billing(C#, item, price, FN, SN, post, phn, email).

➤ For any instance \((D_c, D_b)\) of \((\text{card}, \text{billing})\), \(t \in D_c, t' \in D_b\),
 ➤ if \(t[C\#] = t'[C\#]\),
 ➤ then \(t[Y_c]\) and \(t'[Y_b]\) must match – refer to the same holder
 \(Y_c = [\text{FN, LN, addr, tel, email}], \quad Y_b = [\text{FN, SN, post, phn, email}].\)
Object identification

Data deduplication, merge/purge, record linkage (matching): to identify tuples from one or more relations that refer to the same real-world object.

Example: credit-card fraud detection

- Schema: credit cards and billing transactions
 - card(C#, type, SSN, FN, LN, addr, tel, email),
 - billing(C#, item, price, FN, SN, post, phn, email).
- For any instance \((D_c, D_b)\) of (card, billing), \(t \in D_c, t' \in D_b\),
 - if \(t[C#] = t'[C#]\),
 - then \(t[Y_c]\) and \(t'[Y_b]\) must match – refer to the same holder

\[Y_c = [FN, LN, addr, tel, email], \quad Y_b = [FN, SN, post, phn, email].\]

essential to data integration, data cleaning, ...
Matching rules

Challenges: unreliable data sources, different representations ...

Matching rules: what attributes to compare and how to compare the attributes

- if $t[\text{LN, addr}]$ and $t'[\text{SN, post}]$ match, and
- if $t[\text{FN}]$ and $t'[\text{FN}]$ either match or are similar w.r.t. a similarity relation \approx_d,
- then $t[\text{Y}_c]$ and $t'[\text{Y}_b]$ match
Matching rules

Challenges: unreliable data sources, different representations ...

Matching rules: what attributes to compare and how to compare the attributes

- if \(t[\text{LN, addr}] \) and \(t'[\text{SN, post}] \) match, and
- if \(t[\text{FN}] \) and \(t'[\text{FN}] \) either match or are similar w.r.t. a similarity relation \(\approx_d \),
- then \(t[\text{Y}_c] \) and \(t'[\text{Y}_b] \) match

We can identify \(t[\text{Y}_c] \) and \(t'[\text{Y}_b] \) even if they radically differ in some attributes

- comparing \(t[\text{LN, addr, FN}] \) and \(t'[\text{SN, post, FN}] \) instead of \(t[\text{FN, LN, addr, tel, email}] \) and \(t'[\text{FN, SN, post, phn, email}] \).
- similarity \(\approx_d \) in stead of equality on \(\text{FN} \)
Expressing matching rules as dependencies

Match relation: \equiv

- if $t[\text{LN}, \text{addr}] \equiv t'[\text{SN}, \text{post}]$, and
- if either $t[\text{FN}] \equiv t'[\text{FN}]$ or $t[\text{FN}] \approx d t'[\text{FN}]$,
- then $t[\text{Y}_c] \equiv t'[\text{Y}_b]$

ϕ_1: $	ext{card}[\text{LN}] \equiv \text{billing}[\text{SN}] \land \text{card}[\text{addr}] \equiv \text{billing}[\text{post}] \land$
$\text{card}[\text{FN}] \equiv \text{billing}[\text{FN}] \rightarrow \text{card}[\text{Y}_c] \equiv \text{billing}[\text{Y}_b]$

ϕ_2: $	ext{card}[\text{LN}] \equiv \text{billing}[\text{SN}] \land \text{card}[\text{addr}] \equiv \text{billing}[\text{post}] \land$
$\text{card}[\text{FN}] \approx d \text{billing}[\text{FN}] \rightarrow \text{card}[\text{Y}_c] \equiv \text{billing}[\text{Y}_b]$
Domain specific relations

A fixed set Θ of similarity relations: for each \approx in Θ,

- **reflexive**: $x \approx x$;
- **symmetric**: if $x \approx y$ then $y \approx x$;
- **subsuming equality** \equiv: if $x = y$ then $x \approx y$.

Wenfei Fan – Dependencies Revisited for Improving Data Quality 28 / 70
Domain specific relations

A fixed set Θ of similarity relations: for each \approx in Θ,
- **reflexive**: $x \approx x$;
- **symmetric**: if $x \approx y$ then $y \approx x$;
- **subsuming equality** $=$: if $x = y$ then $x \approx y$.

Special relations in Θ:
- **equality** $=$
Domain specific relations

A fixed set Θ of similarity relations: for each \approx in Θ,

- **reflexive**: $x \approx x$;
- **symmetric**: if $x \approx y$ then $y \approx x$;
- **subsuming equality** \equiv: if $x = y$ then $x \approx y$.

Special relations in Θ:

- **equality** \equiv
- **match relation** \Leftrightarrow defined on value lists:
 - **transitivity**: if $L_1 \Leftrightarrow L_2$ and $L_2 \Leftrightarrow L_3$ then $L_1 \Leftrightarrow L_3$.
 - **pairwise match**: for $L = [L_1, \ldots, L_k]$ and $L' = [L'_1, \ldots, L'_k]$,

 $L \Leftrightarrow L'$ iff $L_j \Leftrightarrow L_j$ for all $j \in [1, k]$.

Domain specific: \approx may not be expressible in FO
Matching dependencies (MDs)

- An MD ϕ defined on schemas (R_1, R_2):

$$\bigwedge_{j \in [1,k]} (R_1[X_1[j]] \approx_j R_2[X_2[j]]) \rightarrow R_1[Z_1] \approx R_2[Z_2]$$

- \approx and \approx_j are similarity relations in Θ;
- X_1, X_2 (resp. Z_1, Z_2): attribute lists of R_1, R_2

- The MD ϕ holds on (D_1, D_2), where D_i is an instance of R_i, iff for any tuple u in D_1 and any tuple v in D_2, if $\bigwedge_{j \in [1,k]} u[X_1[j]] \approx_j v[X_2[j]]$, then $u[Z_1] \approx v[Z_2]$.

ϕ_1: $\text{card[LN]} \Leftarrow \text{billing[SN]} \land \text{card[addr]} \Leftarrow \text{billing[post]} \land \text{card[FN]} \Leftarrow \text{billing[FN]} \rightarrow \text{card[Y_c]} \Leftarrow \text{billing[Y_b]}$

ϕ_2: $\text{card[LN]} \Leftarrow \text{billing[SN]} \land \text{card[addr]} \Leftarrow \text{billing[post]} \land \text{card[FN]} \approx_d \text{billing[FN]} \rightarrow \text{card[Y_c]} \Leftarrow \text{billing[Y_b]}$
Example matching dependencies

- If \(t[tel] \) and \(t'[phn] \) equal, then \(t[addr] \Leftrightarrow t'[post] \)
- If \(t[email] \) and \(t'[email] \) equal, then \(t[FN, LN] \Leftrightarrow t'[FN, SN] \).

\(\phi_3: \) \(\text{card}[tel] = \text{billing}[phn] \rightarrow \text{card}[addr] \Leftrightarrow \text{billing}[post] \)

\(\phi_4: \) \(\text{card}[email] = \text{billing}[email] \rightarrow \text{card}[FN, LN] \Leftrightarrow \text{billing}[FN, SN] \)
Known vs. unknown relations

\[
\text{card}[\text{LN}] \iff \text{billing}[\text{SN}] \land \text{card}[\text{addr}] \iff \text{billing}[\text{post}] \land \\
\text{card}[\text{FN}] \approx_d \text{billing}[\text{FN}] \rightarrow \text{card}[Y_c] \iff \text{billing}[Y_b]
\]

- **Similarity** \(\approx\) (except \(\iff\)), e.g., =, \(\approx_d\): to compare data values in unreliable sources
 - similarity metrics: edit distance, \(q\)-grams, Jaro distance, ...
 - total mappings defined on specific domains, already given
Known vs. unknown relations

card[FN] ≈_d billing[FN] → card[Y_c] ⇔ billing[Y_b]

- **Similarity**: \(\approx (\text{except } \rightleftharpoons) \), e.g., =, \(\approx_d \): to compare data values in unreliable sources
 - similarity metrics: edit distance, \(q \)-grams, Jaro distance, ...
 - total mappings defined on specific domains, already given

- **Match relation**: \(\rightleftharpoons \):
 - either not given or partially defined;
 - to be “inferred” via generic reasoning about matching rules;
 - \(u[Z_1] \rightleftharpoons v[Z_2] \)
 - \(u[Z_1] \) and \(v[Z_2] \) refer to the same object;
 - \(u[Z_1] \) and \(v[Z_2] \) may not be directly matched using any metric
 \(\approx \) known in advance.
Known vs. unknown relations

card[FN] ≈ₜ billing[FN] → card[Y_c] ⇔ billing[Y_b]

- **Similarity** ≈ (except ⇔), e.g., =, ≈ₜ: to compare data values in unreliable sources
 - similarity metrics: edit distance, q-grams, Jaro distance, ...
 - total mappings defined on specific domains, already given

- **Match relation** ⇔:
 - either not given or partially defined;
 - to be “inferred” via generic reasoning about matching rules;
 - \(u[Z_1] ⇔ v[Z_2] \)
 - \(u[Z_1] \) and \(v[Z_2] \) refer to the same object;
 - \(u[Z_1] \) and \(v[Z_2] \) may not be directly matched using any metric ≈ known in advance.

- **Matching dependencies**: essentially used to infer the match relation ⇔ (implication analysis)
Matching dependencies vs. Functional dependencies

An extension of traditional functional dependencies (FDs)

- **MDs**: \(\bigwedge_{j \in [1,k]}(R_1[X_1[j]] \approx_j R_2[X_2[j]]) \rightarrow R_1[Z_1] \approx R_2[Z_2] \)

- **FDs** \(R(X \rightarrow Y) \): a special form of MDs when \(R_1 \) and \(R_2 \) are both \(R \), \(X_1[j] \) and \(X_2[j] \) are the same attribute for \(j \in [1,k] \), \(Z_1 \) and \(Z_2 \) are the same attribute list, and \(\approx_j \) and \(\approx \) are =.
Matching dependencies vs. Functional dependencies

An extension of traditional functional dependencies (FDs)

- **MDs**: \(\bigwedge_{j \in [1,k]} (R_1[X_1[j]] \approx_j R_2[X_2[j]]) \rightarrow R_1[Z_1] \approx R_2[Z_2] \)

- **FDs** \(R(X \rightarrow Y) \): a special form of MDs when \(R_1 \) and \(R_2 \) are both \(R \), \(X_1[j] \) and \(X_2[j] \) are the same attribute for \(j \in [1,k] \), \(Z_1 \) and \(Z_2 \) are the same attribute list, and \(\approx_j \) and \(\approx \) are =.

Differences:

- MDs may be defined **across different relations**, while FDs on a **single** relation
- MDs may be defined in terms of **similarity**, while FDs with **equality** only
- Implication analysis of MDs is **quite different** from its FD counterpart – coming up shortly
References

Outline

- Conditional dependencies for capturing data inconsistencies
 - Conditional functional dependencies (CFDs)
 - Conditional inclusion dependencies (CINDs)
 - Other extensions

- Matching dependencies for object identification
 - Object identification and matching rules
 - Matching dependencies

- Static analyses: New challenges
 - Reasoning about conditional dependencies: Satisfiability, implication, axiomatizability, dependency propagation
 - Inferring matching rules

- Improving data quality with dependencies
 - Data repairing (Arenas, Bertossi, Chomicki)
 - Consistent querying answering (Arenas, Bertossi, Chomicki)
 - Condensed representations of all repairs

- Open research issues
Classical decision problems

- **The satisfiability problem** is to determine, given a schema \mathcal{R} and a set Σ of dependencies defined on \mathcal{R}, whether or not there exists a **nonempty** database instance D of \mathcal{R} that satisfies all dependencies φ in Σ.

To decide whether or not dependencies are **dirty** themselves

- **The implication problem** is to determine, given a schema \mathcal{R}, a set Σ of dependencies and a single dependency ϕ defined on \mathcal{R}, whether or not Σ **implies** ϕ, denoted by $\Sigma \models \phi$, i.e., whether for any each instance D of \mathcal{R} that satisfies Σ, D also satisfies ϕ.

To remove redundant dependencies
Reasoning about conditional functional dependencies

For traditional FDs,

- the satisfiability problem is not an issue, and
- the implication problem is in linear time
For traditional FDs,

- the satisfiability problem is not an issue, and
- the implication problem is in linear time

In contrast, a set of CFDs may have conflicts or inconsistencies:

\[\varphi = R(A \rightarrow B, T_p) \]

- For any nonempty database \(D \) and for any tuple \(t \) in \(D \), \(\varphi \) says that \(t[B] \) must be both \(b_1 \) and \(b_2 \).
In the same setting as the classical dependency theory

Recall domain specification in a schema:

\[
\text{Cust}(\text{CC}: \text{int}, \text{AC}: \text{int}, \text{phn}: \text{int}, \text{name}: \text{string}, \text{street}: \text{string}, \ldots)
\]

It is typically assumed that in each domain,

- there are at least two elements,
- there is no upper bound: possibly infinitely many
In the same setting as the classical dependency theory

Recall domain specification in a schema:

\[
\text{Cust}(\text{CC}: \text{int}, \text{AC}: \text{int}, \text{phn}: \text{int}, \text{name}: \text{string}, \text{street}: \text{string}, \ldots)
\]

It is typically assumed that in each domain,

- there are at least two elements,
- there is no upper bound: possibly infinitely many

Good news: in this setting, CFDs do **not** make our lives much harder

Theorem

For CFDs, the satisfiability problem and the implication problem are both in quadratic time.
In the same setting as the classical dependency theory

Recall domain specification in a schema:

\[
\text{Cust}(CC: \text{int}, AC: \text{int}, phn: \text{int}, name: \text{string}, street: \text{string}, \ldots)
\]

It is typically assumed that in each domain,

- there are at least two elements,
- there is no upper bound: possibly infinitely many

Good news: in this setting, CFDs do **not** make our lives much harder

Theorem

For CFDs, the satisfiability problem and the implication problem are both in quadratic time.

Bad news: this no longer holds in the presence of attributes with a finite domain
The interaction between CFDs and domain constraints

In practice, it is common to find attributes with a finite domain: Boolean, date, ...

While the presence of attributes with a finite domain does not complicate the analyses of FDs, it does take a toll on CFDs.

Consider $\Sigma = \{\psi_1, \psi_2\}$, where

$\psi_1 = R(A \rightarrow B, T_1)$, and $\psi_2 = R(B \rightarrow A, T_2)$

If $\text{dom}(A)$ is Boolean, then Σ is not satisfiable!
The interaction between CFDs and domain constraints

In practice, it is common to find attributes with a finite domain: Boolean, date, ...

While the presence of attributes with a finite domain does not complicate the analyses of FDs, it does take a toll on CFDs

Consider $\Sigma = \{\psi_1, \psi_2\}$, where

$\psi_1 = R(A \rightarrow B, T_1)$, and $\psi_2 = R(B \rightarrow A, T_2)$

$T_1 = \begin{array}{|c|c|}
\hline
A & B \\
\hline
true & b_1 \\
false & b_2 \\
\hline
\end{array}$

$T_2 = \begin{array}{|c|c|}
\hline
B & A \\
\hline
b_1 & false \\
b_2 & true \\
\hline
\end{array}$

If dom(A) is Boolean, then Σ is not satisfiable!
The interaction between CFDs and domain constraints

In practice, it is common to find attributes with a finite domain: Boolean, date, ...

While the presence of attributes with a finite domain does not complicate the analyses of FDs, it does take a toll on CFDs

Consider $\Sigma = \{\psi_1, \psi_2\}$, where

$\psi_1 = R(A \rightarrow B, T_1)$, and $\psi_2 = R(B \rightarrow A, T_2)$

If dom(A) is Boolean, then Σ is not satisfiable!
The interaction between CFDs and domain constraints

In practice, it is common to find attributes with a finite domain: Boolean, date, ...

While the presence of attributes with a finite domain does not complicate the analyses of FDs, it does take a toll on CFDs

Consider $\Sigma = \{\psi_1, \psi_2\}$, where

$\psi_1 = R(A \rightarrow B, T_1)$, and $\psi_2 = R(B \rightarrow A, T_2)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>true</td>
<td>b_1</td>
</tr>
<tr>
<td></td>
<td>false</td>
<td>b_2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_2</td>
<td>b_1</td>
<td>false</td>
</tr>
<tr>
<td></td>
<td>b_2</td>
<td>true</td>
</tr>
</tbody>
</table>

If $\text{dom}(A)$ is Boolean, then Σ is not satisfiable!

Theorem

When attributes with a finite domain may be present,

- the satisfiability problem for CFDs is \textit{NP-complete}, and
- the implication problem for CFDs is \textit{coNP-complete}.*
Finite axiomatizability of CFDs

Armstrong’s axioms for FDs:

- **Reflexivity**: If $Y \subseteq X$, then $X \rightarrow Y$
- **Augmentation**: If $X \rightarrow Y$, then $XZ \rightarrow YZ$
- **Transitivity**: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Sound and complete: $\Sigma \models \phi$ iff ϕ can be inferred from Σ using the axioms.
Finite axiomatizability of CFDs

Armstrong’s axioms for FDs:

- **Reflexivity**: If $Y \subseteq X$, then $X \rightarrow Y$
- **Augmentation**: If $X \rightarrow Y$, then $XZ \rightarrow YZ$
- **Transitivity**: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Sound and complete: $\Sigma \models \phi$ iff ϕ can be inferred from Σ using the axioms.

Theorem

There is a sound and complete inference system for CFDs.
Finite axiomatizability of CFDs

Armstrong’s axioms for FDs:

- Reflexivity: If \(Y \subseteq X \), then \(X \rightarrow Y \)
- Augmentation: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \)
- Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)

Sound and complete: \(\Sigma \models \phi \) iff \(\phi \) can be inferred from \(\Sigma \) using the axioms.

Theorem

There is a sound and complete inference system for CFDs.

More involved than Armstrong’s axioms:

- If \((X \rightarrow Y, t_p) \) and \((Y \rightarrow Z, t'_p) \), and
- and if \(t_p[Y] \preceq t'_p[Y] \) (\(\preceq \), \(\preceq \), \(\preceq \)),
- then \((X \rightarrow Z, (t_p[X] \parallel t'_p[Z])) \)
Static Analyses: CFDs vs. FDs

- In the absence of attributes with a finite domain:

<table>
<thead>
<tr>
<th></th>
<th>satisfiability</th>
<th>implication</th>
<th>finite axiomatizability</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFD</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>yes</td>
</tr>
<tr>
<td>FD</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>yes</td>
</tr>
</tbody>
</table>

- General setting:

<table>
<thead>
<tr>
<th></th>
<th>satisfiability</th>
<th>implication</th>
<th>finite axiomatizability</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFD</td>
<td>NP-complete</td>
<td>coNP-complete</td>
<td>yes</td>
</tr>
<tr>
<td>FD</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>yes</td>
</tr>
</tbody>
</table>

The interaction between domain constraints and CFDs.
Reasoning about conditional inclusion dependencies: Satisfiability

Flashback:
- The satisfiability problem for CFDs in NP-complete in the general setting.
- One can specify any INDs without worrying about their satisfiability.
Reasoning about conditional inclusion dependencies: Satisfiability

Flashback:

- The satisfiability problem for CFDs in NP-complete in the general setting.
- One can specify any INDs without worrying about their satisfiability.

In contrast to CFDs,

Theorem

In the general setting, any set of CINDs is satisfiable.
The implication problem for traditional INDs is \textit{PSPACE-complete}.

\textbf{Good news}: the complexity does not hike up in the absence of attributes with a finite domain.

\begin{tcolorbox}[ams, colback=blue!25, awareness]
\textbf{Theorem}

\textit{In the absence of attributes with a finite domain, the implication problem for CINDs is \textit{PSPACE-complete}.}
\end{tcolorbox}
The implication problem for traditional INDs is **PSPACE-complete**.

Good news: the complexity does not hike up in the absence of attributes with a finite domain.

Theorem

*In the absence of attributes with a finite domain, the implication problem for CINDs is **PSPACE-complete**.*

In the general setting, however,

Theorem

*The implication problem for CINDs is **EXPTIME-complete** in the general setting.*
Finite axiomatizability of CINDs

There is a sound and complete inference system for traditional INDs (reflexivity, projection/permutation, transitivity),

Theorem

There is a *sound and complete* inference system for CINDs.

The inference system is more involved than its traditional counterpart.
Static Analysis: CINDs vs. INDs

In the absence of attributes with a finite domain:

<table>
<thead>
<tr>
<th></th>
<th>satisfiability</th>
<th>implication</th>
<th>finite axiomatizability</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIND</td>
<td>$O(1)$</td>
<td>PSPACE-complete</td>
<td>yes</td>
</tr>
<tr>
<td>IND</td>
<td>$O(1)$</td>
<td>PSPACE-complete</td>
<td>yes</td>
</tr>
</tbody>
</table>

General setting:

<table>
<thead>
<tr>
<th></th>
<th>satisfiability</th>
<th>implication</th>
<th>finite axiomatizability</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIND</td>
<td>$O(1)$</td>
<td>EXPTIME-complete</td>
<td>yes</td>
</tr>
<tr>
<td>IND</td>
<td>$O(1)$</td>
<td>PSPACE-complete</td>
<td>yes</td>
</tr>
</tbody>
</table>

The interaction between domain constraints and CINDs.
CFDs and CINDs taken together

We need both CFDs and CINDs for

- data cleaning
- schema mapping

For traditional FDs and INDs taken together,

- the satisfiability problem is in $O(1)$ time, and
- the implication problem is undecidable.
CFDs and CINDs taken together

We need both CFDs and CINDs for

- data cleaning
- schema mapping

For traditional FDs and INDs taken together,

- the satisfiability problem is in $O(1)$ time, and
- the implication problem is undecidable.

In contrast,

Theorem

For CFDs and CINDs taken together,

- the satisfiability problem becomes undecidable, and
- the implication problem remains undecidable.

The need for effective heuristic algorithms
Dependency propagation: The need

In data exchange or data integration, dependencies that hold on sources may only hold conditionally on the target data.

- **Sources:** two relations for customers in the UK and USA
 \[R_S(\text{AC}: \text{int}, \text{phn}: \text{int}, \text{name}: \text{string}, \text{street}: \text{string}, \text{city}: \text{string}, \text{zip}: \text{string}) \]

- **A traditional FD on** \(R_{UK} \): \(\text{zip} \rightarrow \text{street} \)

- **View definition:** \((R_{UK} \times (\text{CC}: 44)) \cup (R_{USA} \times (\text{CC}: 01)) \)

- **The FD no longer** holds on the target data
Dependency propagation: The need

In data exchange or data integration, dependencies that hold on sources may only hold conditionally on the target data.

- Sources: two relations for customers in the UK and USA
 \[R_S(\text{AC}: \text{int}, \text{phn}: \text{int}, \text{name}: \text{string}, \text{street}: \text{string}, \text{city}: \text{string}, \text{zip}: \text{string}) \]

- A traditional FD on \(R_{UK} \): \(\text{zip} \rightarrow \text{street} \)

- View definition: \((R_{UK} \times (\text{CC}: 44)) \cup (R_{USA} \times (\text{CC}: 01)) \)

- The FD no longer holds on the target data

- The FD is indeed propagated to the target, but as a CFD

\[
([\text{CC}, \text{zip}] \rightarrow [\text{street}], T_p)
\]

\[
\begin{array}{ccc}
\text{CC} & \text{zip} & \text{street} \\
44 & - & - \\
\end{array}
\]
Dependency propagation

- **Input:**
 - A set Σ of source dependencies: FDs (or CFDs) on the sources
 - View definition σ: a query in (a fragment of) relational algebra
 - A view dependency φ

- **Question:** Is φ propagated from Σ via σ?

 For any source database D that satisfies Σ, the view $\sigma(D)$ is guaranteed to satisfy φ.

Studied for propagation from source FDs to view FDs:

It is believed that the dependency propagation problem is

- in \textbf{PTIME} for views defined in terms of \textbf{SPCU} queries (selection, projection, Cartesian product, union),
- \textbf{undecidable} for views defined in relational algebra.
It is believed that the dependency propagation problem is

- in \text{PTIME} for views defined in terms of \text{SPCU} queries
 (selection, projection, Cartesian product, union),
- \text{undecidable} for views defined in relational algebra.

The \text{PTIME} result holds, but only in the absence of attributes with a finite domain:

\textbf{Theorem}

\textit{The propagation problem from source FDs to view FDs is already coNP-complete for SC views in the general setting.}

There is interaction between domain constraints and dependency propagation analysis.
Reasoning about matching dependencies (MDs)

Matching dependencies: if C holds then identify x and y.

Generic reasoning:

- A set Σ of MDs entails another MD ϕ, denoted by $\Sigma \models_m \phi$, if for any instance D that satisfies Σ, D satisfies ϕ,
 - for all similarity and match relations satisfying their generic axioms (reflexivity, symmetric and subsuming equality for \approx; and additionally, transitivity and pairwise match for \equiv)

- The implication problem for MDs: to determine, given any Σ and ϕ, whether or not $\Sigma \models_m \phi$.

Logical consequence: no matter how matching rules are interpreted, if Σ is enforced, then so must be ϕ.
Derived MDs can add value

- A set Σ of given MDs:

 $\text{card}[LN] \rightleftharpoons \text{billing}[SN] \land \text{card}[addr] \rightleftharpoons \text{billing}[post] \land$

 $\text{card}[FN] \rightleftharpoons \text{billing}[FN] \rightarrow \text{card}[Y_c] \rightleftharpoons \text{billing}[Y_b]$

 $\text{card}[LN] \rightleftharpoons \text{billing}[SN] \land \text{card}[addr] \rightleftharpoons \text{billing}[post] \land$

 $\text{card}[FN] \approx_d \text{billing}[FN] \rightarrow \text{card}[Y_c] \rightleftharpoons \text{billing}[Y_b]$

 $\text{card}[tel] = \text{billing}[phn] \rightarrow \text{card}[addr] \rightleftharpoons \text{billing}[post]$

 $\text{card}[email] = \text{billing}[email] \rightarrow \text{card}[FN, LN] \rightleftharpoons \text{billing}[FN, SN]$

- Derived MDs: $\Sigma \models_m \phi$

 $\text{card}[email, addr] = \text{billing}[email, post] \rightarrow \text{card}[Y_c] \rightleftharpoons \text{billing}[Y_b]$

 $\text{card}[LN, tel] = \text{billing}[SN, phn] \land \text{card}[FN] \approx_d \text{billing}[FN]$

 $\rightarrow \text{card}[Y_c] \rightleftharpoons \text{billing}[Y_b]$
Derived MDs can add value

- A set Σ of given MDs:

$$\text{card}[\text{LN}] \iff \text{billing}[\text{SN}] \land \text{card}[\text{addr}] \iff \text{billing}[\text{post}] \land \text{card}[\text{FN}] \iff \text{billing}[\text{FN}] \rightarrow \text{card}[Y_c] \iff \text{billing}[Y_b]$$

$$\text{card}[\text{LN}] \iff \text{billing}[\text{SN}] \land \text{card}[\text{addr}] \iff \text{billing}[\text{post}] \land \text{card}[\text{FN}] \approx_d \text{billing}[\text{FN}] \rightarrow \text{card}[Y_c] \iff \text{billing}[Y_b]$$

$$\text{card}[\text{tel}] = \text{billing}[\text{phn}] \rightarrow \text{card}[\text{addr}] \iff \text{billing}[\text{post}]$$

$$\text{card}[\text{email}] = \text{billing}[\text{email}] \rightarrow \text{card}[\text{FN, LN}] \iff \text{billing}[\text{FN, SN}]$$

- Derived MDs: $\Sigma \models_m \phi$

$$\text{card}[\text{email, addr}] = \text{billing}[\text{email, post}] \rightarrow \text{card}[Y_c] \iff \text{billing}[Y_b]$$

$$\text{card}[\text{LN, tel}] = \text{billing}[\text{SN, phn}] \land \text{card}[\text{FN}] \approx_d \text{billing}[\text{FN}]$$

$$\rightarrow \text{card}[Y_c] \iff \text{billing}[Y_b]$$

- When tuples differ in each of (LN, SN) and (addr, post), they can be identified via derived MDs, but not by the given MDs.
The implication problem for matching dependencies

Derived MDs:

\[
\begin{align*}
\text{card}[\text{email, addr}] &= \text{billing}[\text{email, post}] \rightarrow \text{card}[Y_c] \iff \text{billing}[Y_b] \\
\text{card}[\text{LN, tel}] &= \text{billing}[\text{SN, phn}] \land \text{card}[\text{FN}] \approx_d \text{billing}[\text{FN}] \\
&\rightarrow \text{card}[Y_c] \iff \text{billing}[Y_b]
\end{align*}
\]

- These derived MDs allow us to identify tuples based **solely** on the similarity metrics given on the source data.
- The implication analysis of MDs aims to derive matching rules on unreliable data.
The implication problem for matching dependencies

Derived MDs:

\[
\begin{align*}
card[\text{email, addr}] &= billing[\text{email, post}] \rightarrow card[Y_c] \Leftarrow billing[Y_b] \\
card[\text{LN, tel}] &= billing[\text{SN, phn}] \land card[\text{FN}] \approx_d billing[\text{FN}] \\
&\rightarrow card[Y_c] \Leftarrow billing[Y_b]
\end{align*}
\]

- These derived MDs allow us to identify tuples based solely on the similarity metrics given on the source data.
- The implication analysis of MDs aims to derive matching rules on unreliable data.

Theorem

The implication problem for matching dependencies is in \textit{PTIME}.
Conditional dependencies for capturing data inconsistencies
 ▶ Conditional functional dependencies (CFDs)
 ▶ Conditional inclusion dependencies (CINDs)
 ▶ Other extensions

Matching dependencies for object identification
 ▶ Object identification and matching rules
 ▶ Matching dependencies

Static analyses: New challenges
 ▶ Reasoning about conditional dependencies: Satisfiability, implication, axiomatizability, dependency propagation
 ▶ Inferring matching rules

Improving data quality with dependencies
 ▶ Data repairing (Arenas, Bertossi, Chomicki)
 ▶ Consistent querying answering (Arenas, Bertossi, Chomicki)
 ▶ Condensed representations of all repairs

Open research issues

- **Input:** a relational database D and a set Σ of dependencies
- **Output:** a repair D' of D w.r.t. Σ: $D' \models \Sigma$ (consistent), and D' minimally differs from the original database D.

Example repair models:

- **X-repair:** maximal $D' \subseteq D$, $D' \models \Sigma$ (tuple deletions)
- **S-repair:** minimal $(D \setminus D') \cup (D' \setminus D)$ and $D' \models \Sigma$ (tuple insertions and deletions)
- **U-repair:** $D' \models \Sigma$ and minimal cost(D', D) (value modifications).
Data repairing

- **Input**: a relational database D and a set Σ of dependencies
- **Output**: a repair D' of D w.r.t. Σ: $D' \models \Sigma$ (consistent), and D' minimally differs from the original database D.

Example repair models:

- **U-repair**: $D' \models \Sigma$ and minimal cost(D', D) (value modifications). A simple example:

$$cost(D', D) = \sum_{t \in D, t' \in D'} \sum_{A \in R} w(t, A) \cdot dis(t[A], t'[A])$$

- t': the updated version of tuple t;
- $w(t, A)$: the accuracy of the attribute A;
- $dis(u, v)$: the distance between values.
The repair checking problem

Given Σ, D, and D', whether D' is a repair of D w.r.t. Σ?

Theorem

The repair checking problem is

- in PTIME for denial constraints (S-repairs) [2];
- coNP-hard for universal dependencies, and in coNP for any FO sentences (S-repairs) [2];
- in PTIME for FDs and acyclic INDs (X-repairs) [1].
- coNP-complete for one FD and one IND together (X-repairs) [1];
- NP-complete for a fixed set of either FDs or INDs (U-repairs);
- ...

Heuristic for finding a candidate repair

- **Repairing**: given a database D and a set Σ of dependencies, it is to find a candidate repair D' of D w.r.t. Σ

- **Incremental repairing**: given Σ, D, D' and updates ΔD to the database D, it is to find updates $\Delta D'$ to the repair D'

- **Data imputation by US national statistical agencies**:

- **For denial constraints (local, numerical values)**

Heuristic for finding a candidate repair

- For traditional FDs and INDs taken together

- For CFDs

Performance guarantee (precision, recall) with a high confidence?
Heuristic for finding a candidate repair

- For traditional FDs and INDs taken together

- For CFDs

Performance guarantee (precision, recall) with a high confidence?

Master Data Management (MDM): (incremental) repairing based on available master (reference) data D_r

- combination of object identification and data repairing;
- schema mapping;
- ...

Consistent query answering

- **Input**: a database D, a set Σ of dependencies, and a query Q
- **Output**: certain answers to Q in D w.r.t. Σ.
 Tuples that are in the answers to Q in each repair of D w.r.t. Σ.

Invited talks and surveys:

- ...
Complexity bounds for X repair

Theorem

The consistent query answering problem is

- in PTIME for denial constraints and quantifier-free CQ [1];
- in PTIME for primary keys and a restricted class C_{tree} of CQ [2];
- coNP-complete for denial constraints, and is already coNP-hard for a single primary key, for a class of Boolean CQ;
- in PTIME for INDs alone and CQ [3];
- Π_2^p-complete for FDs and INDs taken together, for CQ [3];
- ...

Complexity bounds for S repair

Theorem

The consistent query answering problem is

- $\mathcal{C}(\sigma, \times, -)$: Π^P_2-complete for universal constraints;
- $\mathcal{C}(\sigma, \times, -, \cup)$: in PTIME for denial constraints, and Π^P_2-complete for universal constraints;
- $\mathcal{C}(\sigma, \pi)$: in PTIME for primary keys; coNP-complete for denial constraints, and Π^P_2-complete for universal constraints;
- $\mathcal{C}(\sigma, \pi, \times)$: coNP-complete for primary keys, and Π^P_2-complete for universal constraints;
- $\mathcal{C}(\sigma, \pi, \times, -, \cup)$: coNP-complete for primary keys, and Π^P_2-complete for universal constraints.

...
Representation systems for incomplete information

- **Representation of possible instances:** a table T with variables
 $$\text{rep}(T) = \{\mu(T) \mid \mu \text{ is a valuation of variables in } T\}$$

- **Strong representation system** for a query language L: for each representation T and each $q \in L$, there exists a computable $\bar{q}(T)$ (representing $\{q(D) \mid D \in \text{rep}(T)\}$) such that
 $$\text{rep}(\bar{q}(T)) = q(\text{rep}(T))$$ – the possible answers
 e.g., conditional tables

- **Weak representation system** for L: representing the certain answers, e.g., naive tables

Surveys:

- **Input**: a database D and a satisfiable set Σ of full dependencies
- **Output**: a nucleus G, a single tableau with variables
 - representing all U-repairs of D w.r.t. Σ: for each CQ query q, $q(G)$ yields the consistent answers to q in D w.r.t. Σ;
 - G is homomorphic to all U-repairs;
 - for any tableau that is homomorphic to all U-repairs, it is also homomorphic to G;
 - for a fixed set of dependencies, $|G|$ can be exponential in $|D|$.
Condensed representations of all repairs: Other approaches

- **Answer sets of disjunctive logic programs:** for FO queries and full dependencies

- **World-set decompositions:** finite sets of possible worlds, via the product of decomposed relations

- ...
Conditional dependencies for capturing data inconsistencies
 - Conditional functional dependencies (CFDs)
 - Conditional inclusion dependencies (CINDs)
 - Other extensions

Matching dependencies for object identification
 - Object identification and matching rules
 - Matching dependencies

Static analyses: New challenges
 - Reasoning about conditional dependencies: Satisfiability, implication, axiomatizability, dependency propagation
 - Inferring matching rules

Improving data quality with dependencies
 - Data repairing (Arenas, Bertossi, Chomicki)
 - Consistent querying answering (Arenas, Bertossi, Chomicki)
 - Condensed representations of all repairs

Open research issues
Dependencies revisited

- To capture data inconsistencies: adding conditions
- To identify objects: incorporating similarity
- Revision of static analyses: satisfiability, implication, axiomatizability, dependency propagation
- ...

...
Dependencies revisited

- To capture data inconsistencies: adding conditions
- To identify objects: incorporating similarity
- Revision of static analyses: satisfiability, implication, axiomatizability, dependency propagation
- ...

To find practical use of dependencies in data quality tools
- Develop appropriate constraint languages for improving data quality: revising equality-generating dependencies (EGDs) and tuple-generating dependencies (TGDs)
- Integrate data repairing and object identification: reasoning about conditional dependencies and matching dependencies taken together
- Repairing algorithms with performance guarantee
- Consistent querying answering for conditional dependencies
- ...
Interactions with other lines of research

- **Incomplete information:**
 - Representation systems for **all repairs**?
 - **Tuple completeness** via extensions of TGDs: missing **tuples** in addition to missing values.

- ...
Interactions with other lines of research

- **Incomplete information:**
 - Representation systems for all repairs?
 - **Tuple completeness** via extensions of TGDs: missing tuples in addition to missing values.

- ...

- **Date exchange and data integration:**
 - Adding context to schema matching: CINDs, extending TGDs with conditions

 $\text{(order(title, price; type = 'book') } \subseteq \text{ book(title, price))}$

 - Coping with unreliable data sources

 - ...
Interactions with other lines of research

- **Probabilistic data management:**
 - **Consistent query answering**

 - **Dependencies** for probabilistic data: soft keys?

 - ...
Interactions with other lines of research

- **Probabilistic data management:**
 - Consistent query answering

 - Dependencies for probabilistic data: soft keys?
 - ...

- **Provenance.** P. Buneman: Curated Dabatases
 - Provenance via *dependency propagation* analysis
 - ...

Wenfei Fan – Dependencies Revisited for Improving Data Quality
Interactions with other lines of research

- **Probabilistic data management:**
 - **Consistent query answering**
 - **Dependencies** for probabilistic data: soft keys?
 - ...

- **Provenance.** P. Buneman: Curated Databases
 - **Provenance via dependency propagation analysis**
 - ...

- **XML data cleaning:**
 - **XML constraints for data cleaning:** more intriguing
 - **Repairing algorithms and consistent query answering**
 - ...

Interactions with other lines of research

- **Probabilistic data management:**
 - Consistent query answering

 - Dependencies for probabilistic data: soft keys?
 - ...

- **Provenance.** P. Buneman: Curated Databases
 - Provenance via dependency propagation analysis
 - ...

- **XML data cleaning:**
 - XML constraints for data cleaning: more intriguing
 - Repairing algorithms and consistent query answering

 - ...

A rich source of questions